MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopabg Structured version   Unicode version

Theorem csbopabg 4275
Description: Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
csbopabg  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
Distinct variable groups:    y, z, A    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x)    V( x, y, z)

Proof of Theorem csbopabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3246 . . 3  |-  ( w  =  A  ->  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  [_ A  /  x ]_ { <. y ,  z >.  |  ph } )
2 dfsbcq2 3156 . . . 4  |-  ( w  =  A  ->  ( [ w  /  x ] ph  <->  [. A  /  x ]. ph ) )
32opabbidv 4263 . . 3  |-  ( w  =  A  ->  { <. y ,  z >.  |  [
w  /  x ] ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
41, 3eqeq12d 2449 . 2  |-  ( w  =  A  ->  ( [_ w  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [ w  /  x ] ph }  <->  [_ A  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [. A  /  x ]. ph } ) )
5 vex 2951 . . 3  |-  w  e. 
_V
6 nfs1v 2181 . . . 4  |-  F/ x [ w  /  x ] ph
76nfopab 4265 . . 3  |-  F/_ x { <. y ,  z
>.  |  [ w  /  x ] ph }
8 sbequ12 1944 . . . 4  |-  ( x  =  w  ->  ( ph 
<->  [ w  /  x ] ph ) )
98opabbidv 4263 . . 3  |-  ( x  =  w  ->  { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph } )
105, 7, 9csbief 3284 . 2  |-  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph }
114, 10vtoclg 3003 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652   [wsb 1658    e. wcel 1725   [.wsbc 3153   [_csb 3243   {copab 4257
This theorem is referenced by:  csbcnvg  24029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154  df-csb 3244  df-opab 4259
  Copyright terms: Public domain W3C validator