Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbovg Structured version   Unicode version

Theorem csbovg 6104
 Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
csbovg

Proof of Theorem csbovg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3246 . . 3
2 csbeq1 3246 . . . 4
3 csbeq1 3246 . . . 4
4 csbeq1 3246 . . . 4
52, 3, 4oveq123d 6094 . . 3
61, 5eqeq12d 2449 . 2
7 vex 2951 . . 3
8 nfcsb1v 3275 . . . 4
9 nfcsb1v 3275 . . . 4
10 nfcsb1v 3275 . . . 4
118, 9, 10nfov 6096 . . 3
12 csbeq1a 3251 . . . 4
13 csbeq1a 3251 . . . 4
14 csbeq1a 3251 . . . 4
1512, 13, 14oveq123d 6094 . . 3
167, 11, 15csbief 3284 . 2
176, 16vtoclg 3003 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  csb 3243  (class class class)co 6073 This theorem is referenced by:  csbov12g  6105 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076
 Copyright terms: Public domain W3C validator