Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbresg Structured version   Unicode version

Theorem csbresg 5141
 Description: Distribute proper substitution through the restriction of a class. csbresg 5141 is derived from the virtual deduction proof csbresgVD 28934. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbresg

Proof of Theorem csbresg
StepHypRef Expression
1 csbing 3540 . . 3
2 csbxpg 4897 . . . . 5
3 csbconstg 3257 . . . . . 6
43xpeq2d 4894 . . . . 5
52, 4eqtrd 2467 . . . 4
65ineq2d 3534 . . 3
71, 6eqtrd 2467 . 2
8 df-res 4882 . . 3
98csbeq2i 3269 . 2
10 df-res 4882 . 2
117, 9, 103eqtr4g 2492 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cvv 2948  csb 3243   cin 3311   cxp 4868   cres 4872 This theorem is referenced by:  csbima12gALT  5206  csbima12gALTVD  28936 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-in 3319  df-opab 4259  df-xp 4876  df-res 4882
 Copyright terms: Public domain W3C validator