Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbresgVD Structured version   Unicode version

Theorem csbresgVD 29007
Description: Virtual deduction proof of csbresg 5149. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbresg 5149 is csbresgVD 29007 without virtual deductions and was automatically derived from csbresgVD 29007.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ _V  =  _V ).
3:2:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ).
4:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) ).
5:3,4:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ).
6:5:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
7:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) ).
8:6,7:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
9::  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
10:9:  |-  A. x ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
11:1,10:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) ) ).
12:8,11:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  (  [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
13::  |-  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )  =  (  [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) )
14:12,13:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  (  [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) ).
qed:14:  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (  [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbresgVD  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )

Proof of Theorem csbresgVD
StepHypRef Expression
1 idn1 28665 . . . . . . . . 9  |-  (. A  e.  V  ->.  A  e.  V ).
2 csbconstg 3265 . . . . . . . . 9  |-  ( A  e.  V  ->  [_ A  /  x ]_ _V  =  _V )
31, 2e1_ 28728 . . . . . . . 8  |-  (. A  e.  V  ->.  [_ A  /  x ]_ _V  =  _V ).
4 xpeq2 4893 . . . . . . . 8  |-  ( [_ A  /  x ]_ _V  =  _V  ->  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  (
[_ A  /  x ]_ C  X.  _V )
)
53, 4e1_ 28728 . . . . . . 7  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ).
6 csbxpg 4905 . . . . . . . 8  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) )
71, 6e1_ 28728 . . . . . . 7  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) ).
8 eqeq2 2445 . . . . . . . 8  |-  ( (
[_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V )  ->  ( [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V ) 
<-> 
[_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ) )
98biimpd 199 . . . . . . 7  |-  ( (
[_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V )  ->  ( [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ) )
105, 7, 9e11 28789 . . . . . 6  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) ).
11 ineq2 3536 . . . . . 6  |-  ( [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V )  ->  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V )
)  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) )
1210, 11e1_ 28728 . . . . 5  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V )
)  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V ) ) ).
13 csbing 3548 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) ) )
141, 13e1_ 28728 . . . . 5  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V )
) ).
15 eqeq2 2445 . . . . . 6  |-  ( (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  ( [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  <->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ) )
1615biimpd 199 . . . . 5  |-  ( (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  ( [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  ->  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ) )
1712, 14, 16e11 28789 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ).
18 df-res 4890 . . . . . 6  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
1918ax-gen 1555 . . . . 5  |-  A. x
( B  |`  C )  =  ( B  i^i  ( C  X.  _V )
)
20 csbeq2g 28636 . . . . 5  |-  ( A  e.  V  ->  ( A. x ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )  ->  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V )
) ) )
211, 19, 20e10 28795 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V )
) ).
22 eqeq2 2445 . . . . 5  |-  ( [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  ( [_ A  /  x ]_ ( B  |`  C )  = 
[_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  <->  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ) )
2322biimpd 199 . . . 4  |-  ( [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  ( [_ A  /  x ]_ ( B  |`  C )  = 
[_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  ->  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ) )
2417, 21, 23e11 28789 . . 3  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ).
25 df-res 4890 . . 3  |-  ( [_ A  /  x ]_ B  |` 
[_ A  /  x ]_ C )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
26 eqeq2 2445 . . . 4  |-  ( (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  ( [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )  <->  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
) ) )
2726biimprcd 217 . . 3  |-  ( [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  ( ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )  =  ( [_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) ) )
2824, 25, 27e10 28795 . 2  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) ).
2928in1 28662 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1549    = wceq 1652    e. wcel 1725   _Vcvv 2956   [_csb 3251    i^i cin 3319    X. cxp 4876    |` cres 4880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-in 3327  df-opab 4267  df-xp 4884  df-res 4890  df-vd1 28661
  Copyright terms: Public domain W3C validator