MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbrng Unicode version

Theorem csbrng 4923
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrng  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )

Proof of Theorem csbrng
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3142 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } )
2 sbcexg 3041 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w [. A  /  x ]. <. w ,  y
>.  e.  B ) )
3 sbcel2g 3102 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. w ,  y
>.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1612 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
52, 4bitrd 244 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B ) )
65abbidv 2397 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
71, 6eqtrd 2315 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
8 dfrn3 4869 . . 3  |-  ran  B  =  { y  |  E. w <. w ,  y
>.  e.  B }
98csbeq2i 3107 . 2  |-  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }
10 dfrn3 4869 . 2  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2340 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081   <.cop 3643   ran crn 4690
This theorem is referenced by:  csbima12gALT  5023  csbima12gALTVD  28673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-cnv 4697  df-dm 4699  df-rn 4700
  Copyright terms: Public domain W3C validator