MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbsng Unicode version

Theorem csbsng 3692
Description: Distribute proper substitution through the singleton of a class. csbsng 3692 is derived from the virtual deduction proof csbsngVD 28669. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)

Proof of Theorem csbsng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbabg 3142 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  [. A  /  x ]. y  =  B } )
2 sbceq2g 3103 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) )
32abbidv 2397 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } )
41, 3eqtrd 2315 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } )
5 df-sn 3646 . . 3  |-  { B }  =  { y  |  y  =  B }
65csbeq2i 3107 . 2  |-  [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ { y  |  y  =  B }
7 df-sn 3646 . 2  |-  { [_ A  /  x ]_ B }  =  { y  |  y  =  [_ A  /  x ]_ B }
84, 6, 73eqtr4g 2340 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081   {csn 3640
This theorem is referenced by:  csbfv12gALT  5536  csbfv12gALTVD  28675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082  df-sn 3646
  Copyright terms: Public domain W3C validator