Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbsngVD Unicode version

Theorem csbsngVD 28985
Description: Virtual deduction proof of csbsng 3705. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 3705 is csbsngVD 28985 without virtual deductions and was automatically derived from csbsngVD 28985.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  =  B  <->  [_ A  /  x ]_ y  =  [_ A  /  x ]_ B ) ).
3:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ y  =  y ).
4:3:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ y  =  [_ A  /  x ]_ B  <->  y  =  [_ A  /  x ]_ B ) ).
5:2,4:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) ).
6:5:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B ) ).
7:6:  |-  (. A  e.  V  ->.  { y  |  [. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
8:1:  |-  (. A  e.  V  ->.  { y  |  [. A  /  x ]. y  =  B }  =  [_ A  /  x ]_ { y  |  y  =  B } ).
9:7,8:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
10::  |-  { B }  =  { y  |  y  =  B }
11:10:  |-  A. x { B }  =  { y  |  y  =  B }
12:1,11:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  [_  A  /  x ]_ { y  |  y  =  B } ).
13:9,12:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  {  y  |  y  =  [_ A  /  x ]_ B } ).
14::  |-  { [_ A  /  x ]_ B }  =  { y  |  y  =  [_ A  /  x ]_ B }
15:13,14:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  {  [_ A  /  x ]_ B } ).
qed:15:  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_  A  /  x ]_ B } )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbsngVD  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)

Proof of Theorem csbsngVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 28641 . . . . . . . . 9  |-  (. A  e.  V  ->.  A  e.  V ).
2 sbceqg 3110 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  =  B  <->  [_ A  /  x ]_ y  =  [_ A  /  x ]_ B ) )
31, 2e1_ 28704 . . . . . . . 8  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  =  B  <->  [_ A  /  x ]_ y  =  [_ A  /  x ]_ B ) ).
4 csbconstg 3108 . . . . . . . . . 10  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
51, 4e1_ 28704 . . . . . . . . 9  |-  (. A  e.  V  ->.  [_ A  /  x ]_ y  =  y ).
6 eqeq1 2302 . . . . . . . . 9  |-  ( [_ A  /  x ]_ y  =  y  ->  ( [_ A  /  x ]_ y  =  [_ A  /  x ]_ B  <->  y  =  [_ A  /  x ]_ B
) )
75, 6e1_ 28704 . . . . . . . 8  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ y  = 
[_ A  /  x ]_ B  <->  y  =  [_ A  /  x ]_ B
) ).
8 bibi1 317 . . . . . . . . 9  |-  ( (
[. A  /  x ]. y  =  B  <->  [_ A  /  x ]_ y  =  [_ A  /  x ]_ B )  -> 
( ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B
)  <->  ( [_ A  /  x ]_ y  = 
[_ A  /  x ]_ B  <->  y  =  [_ A  /  x ]_ B
) ) )
98biimprd 214 . . . . . . . 8  |-  ( (
[. A  /  x ]. y  =  B  <->  [_ A  /  x ]_ y  =  [_ A  /  x ]_ B )  -> 
( ( [_ A  /  x ]_ y  = 
[_ A  /  x ]_ B  <->  y  =  [_ A  /  x ]_ B
)  ->  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B
) ) )
103, 7, 9e11 28765 . . . . . . 7  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B
) ).
1110gen11 28693 . . . . . 6  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B
) ).
12 abbi 2406 . . . . . . 7  |-  ( A. y ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B
)  <->  { y  |  [. A  /  x ]. y  =  B }  =  {
y  |  y  = 
[_ A  /  x ]_ B } )
1312biimpi 186 . . . . . 6  |-  ( A. y ( [. A  /  x ]. y  =  B  <->  y  =  [_ A  /  x ]_ B
)  ->  { y  |  [. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B }
)
1411, 13e1_ 28704 . . . . 5  |-  (. A  e.  V  ->.  { y  | 
[. A  /  x ]. y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
15 csbabg 3155 . . . . . . 7  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  [. A  /  x ]. y  =  B } )
1615eqcomd 2301 . . . . . 6  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. y  =  B }  =  [_ A  /  x ]_ { y  |  y  =  B } )
171, 16e1_ 28704 . . . . 5  |-  (. A  e.  V  ->.  { y  | 
[. A  /  x ]. y  =  B }  =  [_ A  /  x ]_ { y  |  y  =  B } ).
18 eqeq1 2302 . . . . . 6  |-  ( { y  |  [. A  /  x ]. y  =  B }  =  [_ A  /  x ]_ {
y  |  y  =  B }  ->  ( { y  |  [. A  /  x ]. y  =  B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  <->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ) )
1918biimpcd 215 . . . . 5  |-  ( { y  |  [. A  /  x ]. y  =  B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  ->  ( { y  |  [. A  /  x ]. y  =  B }  =  [_ A  /  x ]_ {
y  |  y  =  B }  ->  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ) )
2014, 17, 19e11 28765 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  y  =  B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
21 df-sn 3659 . . . . . 6  |-  { B }  =  { y  |  y  =  B }
2221ax-gen 1536 . . . . 5  |-  A. x { B }  =  {
y  |  y  =  B }
23 csbeq2g 28614 . . . . 5  |-  ( A  e.  V  ->  ( A. x { B }  =  { y  |  y  =  B }  ->  [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ {
y  |  y  =  B } ) )
241, 22, 23e10 28772 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ { y  |  y  =  B } ).
25 eqeq2 2305 . . . . 5  |-  ( [_ A  /  x ]_ {
y  |  y  =  B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ { y  |  y  =  B }  <->  [_ A  /  x ]_ { B }  =  { y  |  y  =  [_ A  /  x ]_ B } ) )
2625biimpd 198 . . . 4  |-  ( [_ A  /  x ]_ {
y  |  y  =  B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ { B }  =  [_ A  /  x ]_ { y  |  y  =  B }  ->  [_ A  /  x ]_ { B }  =  {
y  |  y  = 
[_ A  /  x ]_ B } ) )
2720, 24, 26e11 28765 . . 3  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  { y  |  y  =  [_ A  /  x ]_ B } ).
28 df-sn 3659 . . 3  |-  { [_ A  /  x ]_ B }  =  { y  |  y  =  [_ A  /  x ]_ B }
29 eqeq2 2305 . . . 4  |-  ( {
[_ A  /  x ]_ B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }  <->  [_ A  /  x ]_ { B }  =  { y  |  y  =  [_ A  /  x ]_ B } ) )
3029biimprcd 216 . . 3  |-  ( [_ A  /  x ]_ { B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  ->  ( { [_ A  /  x ]_ B }  =  {
y  |  y  = 
[_ A  /  x ]_ B }  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
) )
3127, 28, 30e10 28772 . 2  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B } ).
3231in1 28638 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530    = wceq 1632    e. wcel 1696   {cab 2282   [.wsbc 3004   [_csb 3094   {csn 3653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-sbc 3005  df-csb 3095  df-sn 3659  df-vd1 28637
  Copyright terms: Public domain W3C validator