MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbunig Unicode version

Theorem csbunig 3835
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )

Proof of Theorem csbunig
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3142 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } )
2 sbcexg 3041 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) ) )
3 sbcang 3034 . . . . . . 7  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) )
4 sbcg 3056 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
5 sbcel2g 3102 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
64, 5anbi12d 691 . . . . . . 7  |-  ( A  e.  V  ->  (
( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
73, 6bitrd 244 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
87exbidv 1612 . . . . 5  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) )
92, 8bitrd 244 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) )
109abbidv 2397 . . 3  |-  ( A  e.  V  ->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } )
111, 10eqtrd 2315 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } )
12 df-uni 3828 . . 3  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
1312csbeq2i 3107 . 2  |-  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
14 df-uni 3828 . 2  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) }
1511, 13, 143eqtr4g 2340 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081   U.cuni 3827
This theorem is referenced by:  csbfv12gALT  5536  csbfv12gALTVD  28048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082  df-uni 3828
  Copyright terms: Public domain W3C validator