Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbunigVD Unicode version

Theorem csbunigVD 28674
Description: Virtual deduction proof of csbunig 3835. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunig 3835 is csbunigVD 28674 without virtual deductions and was automatically derived from csbunigVD 28674.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) ).
4:2,3:  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
5:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
6:4,5:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
7:6:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
8:7:  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
10:8,9:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
11:10:  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
12:11:  |-  (. A  e.  V  ->.  { z  |  [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
13:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ).
14:12,13:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
15::  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
16:15:  |-  A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
17:1,16:  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
18:1,17:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
19:14,18:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
20::  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }
21:19,20:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
qed:21:  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbunigVD  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )

Proof of Theorem csbunigVD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 28342 . . . . . . . . . . . . 13  |-  (. A  e.  V  ->.  A  e.  V ).
2 sbcg 3056 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
31, 2e1_ 28399 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
4 sbcel2g 3102 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
51, 4e1_ 28399 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
) ).
6 pm4.38 842 . . . . . . . . . . . . 13  |-  ( ( ( [. A  /  x ]. z  e.  y  <-> 
z  e.  y )  /\  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
) )  ->  (
( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
76ex 423 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
)  ->  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
83, 5, 7e11 28460 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9 sbcang 3034 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) )
101, 9e1_ 28399 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
11 bibi1 317 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  <->  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
1211biimprcd 216 . . . . . . . . . . 11  |-  ( ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) )  -> 
( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
138, 10, 12e11 28460 . . . . . . . . . 10  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
1413gen11 28388 . . . . . . . . 9  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. (
z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
15 exbi 1568 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  -> 
( E. y [. A  /  x ]. (
z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
1614, 15e1_ 28399 . . . . . . . 8  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
17 sbcexg 3041 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) ) )
181, 17e1_ 28399 . . . . . . . 8  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
19 bibi1 317 . . . . . . . . 9  |-  ( (
[. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) )  ->  (
( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) )  <->  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ) )
2019biimprcd 216 . . . . . . . 8  |-  ( ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) )  ->  (
( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) )  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) ) )
2116, 18, 20e11 28460 . . . . . . 7  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
2221gen11 28388 . . . . . 6  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) ).
23 abbi 2393 . . . . . . 7  |-  ( A. z ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  <->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } )
2423biimpi 186 . . . . . 6  |-  ( A. z ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  ->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } )
2522, 24e1_ 28399 . . . . 5  |-  (. A  e.  V  ->.  { z  | 
[. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ).
26 csbabg 3142 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } )
271, 26e1_ 28399 . . . . 5  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } ).
28 eqeq2 2292 . . . . . 6  |-  ( { z  |  [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  <->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
2928biimpd 198 . . . . 5  |-  ( { z  |  [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
3025, 27, 29e11 28460 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ).
31 df-uni 3828 . . . . . . 7  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
3231ax-gen 1533 . . . . . 6  |-  A. x U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }
33 spsbc 3003 . . . . . 6  |-  ( A  e.  V  ->  ( A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  ->  [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ) )
341, 32, 33e10 28467 . . . . 5  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ).
35 sbceqg 3097 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  <->  [_ A  /  x ]_ U. B  = 
[_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ) )
3635biimpd 198 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  ->  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ) )
371, 34, 36e11 28460 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ).
38 eqeq2 2292 . . . . 5  |-  ( [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  <->  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
3938biimpd 198 . . . 4  |-  ( [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  ->  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
4030, 37, 39e11 28460 . . 3  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) } ).
41 df-uni 3828 . . 3  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) }
42 eqeq2 2292 . . . 4  |-  ( U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }  ->  (
[_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B 
<-> 
[_ A  /  x ]_ U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) } ) )
4342biimprcd 216 . . 3  |-  ( [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }  ->  ( U. [_ A  /  x ]_ B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ) )
4440, 41, 43e10 28467 . 2  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
4544in1 28339 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081   U.cuni 3827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082  df-uni 3828  df-vd1 28338
  Copyright terms: Public domain W3C validator