Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbunigVD Unicode version

Theorem csbunigVD 28419
Description: Virtual deduction proof of csbunig 3914. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunig 3914 is csbunigVD 28419 without virtual deductions and was automatically derived from csbunigVD 28419.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) ).
4:2,3:  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
5:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
6:4,5:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
7:6:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
8:7:  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
10:8,9:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
11:10:  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
12:11:  |-  (. A  e.  V  ->.  { z  |  [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
13:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ).
14:12,13:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
15::  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
16:15:  |-  A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
17:1,16:  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
18:1,17:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
19:14,18:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
20::  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }
21:19,20:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
qed:21:  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbunigVD  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )

Proof of Theorem csbunigVD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 28070 . . . . . . . . . . . . 13  |-  (. A  e.  V  ->.  A  e.  V ).
2 sbcg 3132 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
31, 2e1_ 28133 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
4 sbcel2g 3178 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
51, 4e1_ 28133 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
) ).
6 pm4.38 842 . . . . . . . . . . . . 13  |-  ( ( ( [. A  /  x ]. z  e.  y  <-> 
z  e.  y )  /\  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
) )  ->  (
( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
76ex 423 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
)  ->  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
83, 5, 7e11 28194 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9 sbcang 3110 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) )
101, 9e1_ 28133 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
11 bibi1 317 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  <->  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
1211biimprcd 216 . . . . . . . . . . 11  |-  ( ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) )  -> 
( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
138, 10, 12e11 28194 . . . . . . . . . 10  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
1413gen11 28122 . . . . . . . . 9  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. (
z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
15 exbi 1581 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  -> 
( E. y [. A  /  x ]. (
z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
1614, 15e1_ 28133 . . . . . . . 8  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
17 sbcexg 3117 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) ) )
181, 17e1_ 28133 . . . . . . . 8  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
19 bibi1 317 . . . . . . . . 9  |-  ( (
[. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) )  ->  (
( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) )  <->  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ) )
2019biimprcd 216 . . . . . . . 8  |-  ( ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) )  ->  (
( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) )  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) ) )
2116, 18, 20e11 28194 . . . . . . 7  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
2221gen11 28122 . . . . . 6  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) ).
23 abbi 2468 . . . . . . 7  |-  ( A. z ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  <->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } )
2423biimpi 186 . . . . . 6  |-  ( A. z ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  ->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } )
2522, 24e1_ 28133 . . . . 5  |-  (. A  e.  V  ->.  { z  | 
[. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ).
26 csbabg 3218 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } )
271, 26e1_ 28133 . . . . 5  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } ).
28 eqeq2 2367 . . . . . 6  |-  ( { z  |  [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  <->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
2928biimpd 198 . . . . 5  |-  ( { z  |  [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
3025, 27, 29e11 28194 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ).
31 df-uni 3907 . . . . . . 7  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
3231ax-gen 1546 . . . . . 6  |-  A. x U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }
33 spsbc 3079 . . . . . 6  |-  ( A  e.  V  ->  ( A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  ->  [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ) )
341, 32, 33e10 28201 . . . . 5  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ).
35 sbceqg 3173 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  <->  [_ A  /  x ]_ U. B  = 
[_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ) )
3635biimpd 198 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  ->  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ) )
371, 34, 36e11 28194 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ).
38 eqeq2 2367 . . . . 5  |-  ( [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  <->  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
3938biimpd 198 . . . 4  |-  ( [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  ->  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
4030, 37, 39e11 28194 . . 3  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) } ).
41 df-uni 3907 . . 3  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) }
42 eqeq2 2367 . . . 4  |-  ( U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }  ->  (
[_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B 
<-> 
[_ A  /  x ]_ U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) } ) )
4342biimprcd 216 . . 3  |-  ( [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }  ->  ( U. [_ A  /  x ]_ B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ) )
4440, 41, 43e10 28201 . 2  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
4544in1 28067 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1540   E.wex 1541    = wceq 1642    e. wcel 1710   {cab 2344   [.wsbc 3067   [_csb 3157   U.cuni 3906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-v 2866  df-sbc 3068  df-csb 3158  df-uni 3907  df-vd1 28066
  Copyright terms: Public domain W3C validator