Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvarg Structured version   Unicode version

Theorem csbvarg 3280
 Description: The proper substitution of a class for set variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbvarg

Proof of Theorem csbvarg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2966 . 2
2 vex 2961 . . . . . 6
3 df-csb 3254 . . . . . . 7
4 sbcel2gv 3223 . . . . . . . 8
54abbi1dv 2554 . . . . . . 7
63, 5syl5eq 2482 . . . . . 6
72, 6ax-mp 5 . . . . 5
87csbeq2i 3279 . . . 4
9 csbco 3262 . . . 4
10 df-csb 3254 . . . 4
118, 9, 103eqtr3i 2466 . . 3
12 sbcel2gv 3223 . . . 4
1312abbi1dv 2554 . . 3
1411, 13syl5eq 2482 . 2
151, 14syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653   wcel 1726  cab 2424  cvv 2958  wsbc 3163  csb 3253 This theorem is referenced by:  sbccsb2g  3282  csbfvg  5744  iuninc  24016  rusbcALT  27630  csbwrdg  28200  onfrALTlem5  28702  onfrALTlem4  28703  onfrALTlem5VD  29071  onfrALTlem4VD  29072  bnj110  29303  cdlemk40  31788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164  df-csb 3254
 Copyright terms: Public domain W3C validator