MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbxpg Unicode version

Theorem csbxpg 4716
Description: Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbxpg  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C
) )

Proof of Theorem csbxpg
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3142 . . 3  |-  ( A  e.  D  ->  [_ A  /  x ]_ { z  |  E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) ) }  =  { z  |  [. A  /  x ]. E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) ) } )
2 sbcexg 3041 . . . . 5  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  E. w [. A  /  x ]. E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
) ) )
3 sbcexg 3041 . . . . . . 7  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y [. A  /  x ]. ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
) ) )
4 sbcang 3034 . . . . . . . . 9  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  ( [. A  /  x ]. z  = 
<. w ,  y >.  /\  [. A  /  x ]. ( w  e.  B  /\  y  e.  C
) ) ) )
5 sbcg 3056 . . . . . . . . . 10  |-  ( A  e.  D  ->  ( [. A  /  x ]. z  =  <. w ,  y >.  <->  z  =  <. w ,  y >.
) )
6 sbcang 3034 . . . . . . . . . . 11  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( w  e.  B  /\  y  e.  C
)  <->  ( [. A  /  x ]. w  e.  B  /\  [. A  /  x ]. y  e.  C ) ) )
7 sbcel2g 3102 . . . . . . . . . . . 12  |-  ( A  e.  D  ->  ( [. A  /  x ]. w  e.  B  <->  w  e.  [_ A  /  x ]_ B ) )
8 sbcel2g 3102 . . . . . . . . . . . 12  |-  ( A  e.  D  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
97, 8anbi12d 691 . . . . . . . . . . 11  |-  ( A  e.  D  ->  (
( [. A  /  x ]. w  e.  B  /\  [. A  /  x ]. y  e.  C
)  <->  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) )
106, 9bitrd 244 . . . . . . . . . 10  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( w  e.  B  /\  y  e.  C
)  <->  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) )
115, 10anbi12d 691 . . . . . . . . 9  |-  ( A  e.  D  ->  (
( [. A  /  x ]. z  =  <. w ,  y >.  /\  [. A  /  x ]. ( w  e.  B  /\  y  e.  C ) )  <->  ( z  =  <. w ,  y
>.  /\  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
124, 11bitrd 244 . . . . . . . 8  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  ( z  = 
<. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
1312exbidv 1612 . . . . . . 7  |-  ( A  e.  D  ->  ( E. y [. A  /  x ]. ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) )  <->  E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
143, 13bitrd 244 . . . . . 6  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
1514exbidv 1612 . . . . 5  |-  ( A  e.  D  ->  ( E. w [. A  /  x ]. E. y ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
162, 15bitrd 244 . . . 4  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
1716abbidv 2397 . . 3  |-  ( A  e.  D  ->  { z  |  [. A  /  x ]. E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) ) }  =  { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) } )
181, 17eqtrd 2315 . 2  |-  ( A  e.  D  ->  [_ A  /  x ]_ { z  |  E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) ) }  =  { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) } )
19 df-xp 4695 . . . 4  |-  ( B  X.  C )  =  { <. w ,  y
>.  |  ( w  e.  B  /\  y  e.  C ) }
20 df-opab 4078 . . . 4  |-  { <. w ,  y >.  |  ( w  e.  B  /\  y  e.  C ) }  =  { z  |  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
) }
2119, 20eqtri 2303 . . 3  |-  ( B  X.  C )  =  { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) ) }
2221csbeq2i 3107 . 2  |-  [_ A  /  x ]_ ( B  X.  C )  = 
[_ A  /  x ]_ { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) ) }
23 df-xp 4695 . . 3  |-  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C )  =  { <. w ,  y >.  |  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) }
24 df-opab 4078 . . 3  |-  { <. w ,  y >.  |  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) }  =  { z  |  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }
2523, 24eqtri 2303 . 2  |-  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C )  =  {
z  |  E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }
2618, 22, 253eqtr4g 2340 1  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081   <.cop 3643   {copab 4076    X. cxp 4687
This theorem is referenced by:  csbresg  4958  csbresgVD  28671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082  df-opab 4078  df-xp 4695
  Copyright terms: Public domain W3C validator