Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbnfien Structured version   Unicode version

Theorem ctbnfien 26879
Description: An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
ctbnfien  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  ( A  C_  X  /\  -.  A  e.  Fin ) )  ->  A  ~~  Y )

Proof of Theorem ctbnfien
StepHypRef Expression
1 isfinite 7607 . . . . 5  |-  ( A  e.  Fin  <->  A  ~<  om )
21notbii 288 . . . 4  |-  ( -.  A  e.  Fin  <->  -.  A  ~<  om )
3 relen 7114 . . . . . . . . . . 11  |-  Rel  ~~
43brrelexi 4918 . . . . . . . . . 10  |-  ( X 
~~  om  ->  X  e. 
_V )
5 ssdomg 7153 . . . . . . . . . 10  |-  ( X  e.  _V  ->  ( A  C_  X  ->  A  ~<_  X ) )
64, 5syl 16 . . . . . . . . 9  |-  ( X 
~~  om  ->  ( A 
C_  X  ->  A  ~<_  X ) )
7 domen2 7250 . . . . . . . . 9  |-  ( X 
~~  om  ->  ( A  ~<_  X  <->  A  ~<_  om )
)
86, 7sylibd 206 . . . . . . . 8  |-  ( X 
~~  om  ->  ( A 
C_  X  ->  A  ~<_  om ) )
98imp 419 . . . . . . 7  |-  ( ( X  ~~  om  /\  A  C_  X )  ->  A  ~<_  om )
10 brdom2 7137 . . . . . . 7  |-  ( A  ~<_  om  <->  ( A  ~<  om  \/  A  ~~  om ) )
119, 10sylib 189 . . . . . 6  |-  ( ( X  ~~  om  /\  A  C_  X )  -> 
( A  ~<  om  \/  A  ~~  om ) )
1211adantlr 696 . . . . 5  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  A  C_  X )  ->  ( A  ~<  om  \/  A  ~~  om ) )
1312ord 367 . . . 4  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  A  C_  X )  ->  ( -.  A  ~<  om  ->  A  ~~  om ) )
142, 13syl5bi 209 . . 3  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  A  C_  X )  ->  ( -.  A  e.  Fin  ->  A  ~~  om ) )
1514impr 603 . 2  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  ( A  C_  X  /\  -.  A  e.  Fin ) )  ->  A  ~~  om )
16 enen2 7248 . . 3  |-  ( Y 
~~  om  ->  ( A 
~~  Y  <->  A  ~~  om ) )
1716ad2antlr 708 . 2  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  ( A  C_  X  /\  -.  A  e.  Fin ) )  ->  ( A  ~~  Y  <->  A  ~~  om ) )
1815, 17mpbird 224 1  |-  ( ( ( X  ~~  om  /\  Y  ~~  om )  /\  ( A  C_  X  /\  -.  A  e.  Fin ) )  ->  A  ~~  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    e. wcel 1725   _Vcvv 2956    C_ wss 3320   class class class wbr 4212   omcom 4845    ~~ cen 7106    ~<_ cdom 7107    ~< csdm 7108   Fincfn 7109
This theorem is referenced by:  fiphp3d  26880  irrapx1  26891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113
  Copyright terms: Public domain W3C validator