MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic2 Unicode version

Theorem cubic2 20144
Description: The solution to the general cubic equation, for arbitrary choices  G and  T of the square and cube roots. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
cubic2.a  |-  ( ph  ->  A  e.  CC )
cubic2.z  |-  ( ph  ->  A  =/=  0 )
cubic2.b  |-  ( ph  ->  B  e.  CC )
cubic2.c  |-  ( ph  ->  C  e.  CC )
cubic2.d  |-  ( ph  ->  D  e.  CC )
cubic2.x  |-  ( ph  ->  X  e.  CC )
cubic2.t  |-  ( ph  ->  T  e.  CC )
cubic2.3  |-  ( ph  ->  ( T ^ 3 )  =  ( ( N  +  G )  /  2 ) )
cubic2.g  |-  ( ph  ->  G  e.  CC )
cubic2.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
cubic2.m  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
cubic2.n  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
cubic2.0  |-  ( ph  ->  T  =/=  0 )
Assertion
Ref Expression
cubic2  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  CC  (
( r ^ 3 )  =  1  /\  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) ) )
Distinct variable groups:    A, r    B, r    M, r    N, r    ph, r    T, r    X, r
Allowed substitution hints:    C( r)    D( r)    G( r)

Proof of Theorem cubic2
StepHypRef Expression
1 cubic2.a . . . . . . 7  |-  ( ph  ->  A  e.  CC )
2 cubic2.x . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
3 3nn0 9983 . . . . . . . 8  |-  3  e.  NN0
4 expcl 11121 . . . . . . . 8  |-  ( ( X  e.  CC  /\  3  e.  NN0 )  -> 
( X ^ 3 )  e.  CC )
52, 3, 4sylancl 643 . . . . . . 7  |-  ( ph  ->  ( X ^ 3 )  e.  CC )
61, 5mulcld 8855 . . . . . 6  |-  ( ph  ->  ( A  x.  ( X ^ 3 ) )  e.  CC )
7 cubic2.b . . . . . . 7  |-  ( ph  ->  B  e.  CC )
82sqcld 11243 . . . . . . 7  |-  ( ph  ->  ( X ^ 2 )  e.  CC )
97, 8mulcld 8855 . . . . . 6  |-  ( ph  ->  ( B  x.  ( X ^ 2 ) )  e.  CC )
106, 9addcld 8854 . . . . 5  |-  ( ph  ->  ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^
2 ) ) )  e.  CC )
11 cubic2.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
1211, 2mulcld 8855 . . . . . 6  |-  ( ph  ->  ( C  x.  X
)  e.  CC )
13 cubic2.d . . . . . 6  |-  ( ph  ->  D  e.  CC )
1412, 13addcld 8854 . . . . 5  |-  ( ph  ->  ( ( C  x.  X )  +  D
)  e.  CC )
1510, 14addcld 8854 . . . 4  |-  ( ph  ->  ( ( ( A  x.  ( X ^
3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X )  +  D ) )  e.  CC )
16 cubic2.z . . . 4  |-  ( ph  ->  A  =/=  0 )
17 diveq0 9434 . . . 4  |-  ( ( ( ( ( A  x.  ( X ^
3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X )  +  D ) )  e.  CC  /\  A  e.  CC  /\  A  =/=  0 )  ->  (
( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  /  A )  =  0  <->  ( (
( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0 ) )
1815, 1, 16, 17syl3anc 1182 . . 3  |-  ( ph  ->  ( ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  /  A )  =  0  <->  ( (
( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0 ) )
1910, 14, 1, 16divdird 9574 . . . . 5  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  /  A )  =  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  /  A
)  +  ( ( ( C  x.  X
)  +  D )  /  A ) ) )
206, 9, 1, 16divdird 9574 . . . . . . 7  |-  ( ph  ->  ( ( ( A  x.  ( X ^
3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  /  A )  =  ( ( ( A  x.  ( X ^ 3 ) )  /  A )  +  ( ( B  x.  ( X ^ 2 ) )  /  A ) ) )
215, 1, 16divcan3d 9541 . . . . . . . 8  |-  ( ph  ->  ( ( A  x.  ( X ^ 3 ) )  /  A )  =  ( X ^
3 ) )
227, 8, 1, 16div23d 9573 . . . . . . . 8  |-  ( ph  ->  ( ( B  x.  ( X ^ 2 ) )  /  A )  =  ( ( B  /  A )  x.  ( X ^ 2 ) ) )
2321, 22oveq12d 5876 . . . . . . 7  |-  ( ph  ->  ( ( ( A  x.  ( X ^
3 ) )  /  A )  +  ( ( B  x.  ( X ^ 2 ) )  /  A ) )  =  ( ( X ^ 3 )  +  ( ( B  /  A )  x.  ( X ^ 2 ) ) ) )
2420, 23eqtrd 2315 . . . . . 6  |-  ( ph  ->  ( ( ( A  x.  ( X ^
3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  /  A )  =  ( ( X ^ 3 )  +  ( ( B  /  A )  x.  ( X ^ 2 ) ) ) )
2512, 13, 1, 16divdird 9574 . . . . . . 7  |-  ( ph  ->  ( ( ( C  x.  X )  +  D )  /  A
)  =  ( ( ( C  x.  X
)  /  A )  +  ( D  /  A ) ) )
2611, 2, 1, 16div23d 9573 . . . . . . . 8  |-  ( ph  ->  ( ( C  x.  X )  /  A
)  =  ( ( C  /  A )  x.  X ) )
2726oveq1d 5873 . . . . . . 7  |-  ( ph  ->  ( ( ( C  x.  X )  /  A )  +  ( D  /  A ) )  =  ( ( ( C  /  A
)  x.  X )  +  ( D  /  A ) ) )
2825, 27eqtrd 2315 . . . . . 6  |-  ( ph  ->  ( ( ( C  x.  X )  +  D )  /  A
)  =  ( ( ( C  /  A
)  x.  X )  +  ( D  /  A ) ) )
2924, 28oveq12d 5876 . . . . 5  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  /  A
)  +  ( ( ( C  x.  X
)  +  D )  /  A ) )  =  ( ( ( X ^ 3 )  +  ( ( B  /  A )  x.  ( X ^ 2 ) ) )  +  ( ( ( C  /  A )  x.  X )  +  ( D  /  A ) ) ) )
3019, 29eqtrd 2315 . . . 4  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  /  A )  =  ( ( ( X ^ 3 )  +  ( ( B  /  A )  x.  ( X ^ 2 ) ) )  +  ( ( ( C  /  A )  x.  X )  +  ( D  /  A ) ) ) )
3130eqeq1d 2291 . . 3  |-  ( ph  ->  ( ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  /  A )  =  0  <->  ( (
( X ^ 3 )  +  ( ( B  /  A )  x.  ( X ^
2 ) ) )  +  ( ( ( C  /  A )  x.  X )  +  ( D  /  A
) ) )  =  0 ) )
3218, 31bitr3d 246 . 2  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  (
( ( X ^
3 )  +  ( ( B  /  A
)  x.  ( X ^ 2 ) ) )  +  ( ( ( C  /  A
)  x.  X )  +  ( D  /  A ) ) )  =  0 ) )
337, 1, 16divcld 9536 . . 3  |-  ( ph  ->  ( B  /  A
)  e.  CC )
3411, 1, 16divcld 9536 . . 3  |-  ( ph  ->  ( C  /  A
)  e.  CC )
3513, 1, 16divcld 9536 . . 3  |-  ( ph  ->  ( D  /  A
)  e.  CC )
36 cubic2.t . . . 4  |-  ( ph  ->  T  e.  CC )
3736, 1, 16divcld 9536 . . 3  |-  ( ph  ->  ( T  /  A
)  e.  CC )
383a1i 10 . . . . 5  |-  ( ph  ->  3  e.  NN0 )
3936, 1, 16, 38expdivd 11259 . . . 4  |-  ( ph  ->  ( ( T  /  A ) ^ 3 )  =  ( ( T ^ 3 )  /  ( A ^
3 ) ) )
40 cubic2.3 . . . . 5  |-  ( ph  ->  ( T ^ 3 )  =  ( ( N  +  G )  /  2 ) )
4140oveq1d 5873 . . . 4  |-  ( ph  ->  ( ( T ^
3 )  /  ( A ^ 3 ) )  =  ( ( ( N  +  G )  /  2 )  / 
( A ^ 3 ) ) )
42 cubic2.n . . . . . . . 8  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
43 2cn 9816 . . . . . . . . . . 11  |-  2  e.  CC
44 expcl 11121 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
457, 3, 44sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 3 )  e.  CC )
46 mulcl 8821 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( B ^ 3 )  e.  CC )  -> 
( 2  x.  ( B ^ 3 ) )  e.  CC )
4743, 45, 46sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( B ^ 3 ) )  e.  CC )
48 9nn 9884 . . . . . . . . . . . . 13  |-  9  e.  NN
4948nncni 9756 . . . . . . . . . . . 12  |-  9  e.  CC
50 mulcl 8821 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  A  e.  CC )  ->  ( 9  x.  A
)  e.  CC )
5149, 1, 50sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( 9  x.  A
)  e.  CC )
527, 11mulcld 8855 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  C
)  e.  CC )
5351, 52mulcld 8855 . . . . . . . . . 10  |-  ( ph  ->  ( ( 9  x.  A )  x.  ( B  x.  C )
)  e.  CC )
5447, 53subcld 9157 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( B ^ 3 ) )  -  (
( 9  x.  A
)  x.  ( B  x.  C ) ) )  e.  CC )
55 2nn0 9982 . . . . . . . . . . . 12  |-  2  e.  NN0
56 7nn 9882 . . . . . . . . . . . 12  |-  7  e.  NN
5755, 56decnncl 10137 . . . . . . . . . . 11  |- ; 2 7  e.  NN
5857nncni 9756 . . . . . . . . . 10  |- ; 2 7  e.  CC
591sqcld 11243 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
6059, 13mulcld 8855 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  x.  D
)  e.  CC )
61 mulcl 8821 . . . . . . . . . 10  |-  ( (; 2
7  e.  CC  /\  ( ( A ^
2 )  x.  D
)  e.  CC )  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
6258, 60, 61sylancr 644 . . . . . . . . 9  |-  ( ph  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
6354, 62addcld 8854 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( B ^
3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C )
) )  +  (; 2
7  x.  ( ( A ^ 2 )  x.  D ) ) )  e.  CC )
6442, 63eqeltrd 2357 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
65 cubic2.g . . . . . . 7  |-  ( ph  ->  G  e.  CC )
6664, 65addcld 8854 . . . . . 6  |-  ( ph  ->  ( N  +  G
)  e.  CC )
6743a1i 10 . . . . . 6  |-  ( ph  ->  2  e.  CC )
68 expcl 11121 . . . . . . 7  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
691, 3, 68sylancl 643 . . . . . 6  |-  ( ph  ->  ( A ^ 3 )  e.  CC )
70 2ne0 9829 . . . . . . 7  |-  2  =/=  0
7170a1i 10 . . . . . 6  |-  ( ph  ->  2  =/=  0 )
723nn0zi 10048 . . . . . . . 8  |-  3  e.  ZZ
7372a1i 10 . . . . . . 7  |-  ( ph  ->  3  e.  ZZ )
741, 16, 73expne0d 11251 . . . . . 6  |-  ( ph  ->  ( A ^ 3 )  =/=  0 )
7566, 67, 69, 71, 74divdiv32d 9561 . . . . 5  |-  ( ph  ->  ( ( ( N  +  G )  / 
2 )  /  ( A ^ 3 ) )  =  ( ( ( N  +  G )  /  ( A ^
3 ) )  / 
2 ) )
7664, 65, 69, 74divdird 9574 . . . . . 6  |-  ( ph  ->  ( ( N  +  G )  /  ( A ^ 3 ) )  =  ( ( N  /  ( A ^
3 ) )  +  ( G  /  ( A ^ 3 ) ) ) )
7776oveq1d 5873 . . . . 5  |-  ( ph  ->  ( ( ( N  +  G )  / 
( A ^ 3 ) )  /  2
)  =  ( ( ( N  /  ( A ^ 3 ) )  +  ( G  / 
( A ^ 3 ) ) )  / 
2 ) )
7875, 77eqtrd 2315 . . . 4  |-  ( ph  ->  ( ( ( N  +  G )  / 
2 )  /  ( A ^ 3 ) )  =  ( ( ( N  /  ( A ^ 3 ) )  +  ( G  / 
( A ^ 3 ) ) )  / 
2 ) )
7939, 41, 783eqtrd 2319 . . 3  |-  ( ph  ->  ( ( T  /  A ) ^ 3 )  =  ( ( ( N  /  ( A ^ 3 ) )  +  ( G  / 
( A ^ 3 ) ) )  / 
2 ) )
8065, 69, 74divcld 9536 . . 3  |-  ( ph  ->  ( G  /  ( A ^ 3 ) )  e.  CC )
8165, 69, 74sqdivd 11258 . . . 4  |-  ( ph  ->  ( ( G  / 
( A ^ 3 ) ) ^ 2 )  =  ( ( G ^ 2 )  /  ( ( A ^ 3 ) ^
2 ) ) )
82 cubic2.2 . . . . 5  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
8382oveq1d 5873 . . . 4  |-  ( ph  ->  ( ( G ^
2 )  /  (
( A ^ 3 ) ^ 2 ) )  =  ( ( ( N ^ 2 )  -  ( 4  x.  ( M ^
3 ) ) )  /  ( ( A ^ 3 ) ^
2 ) ) )
8464sqcld 11243 . . . . . 6  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
85 4cn 9820 . . . . . . 7  |-  4  e.  CC
86 cubic2.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
877sqcld 11243 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
88 3cn 9818 . . . . . . . . . . 11  |-  3  e.  CC
891, 11mulcld 8855 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  C
)  e.  CC )
90 mulcl 8821 . . . . . . . . . . 11  |-  ( ( 3  e.  CC  /\  ( A  x.  C
)  e.  CC )  ->  ( 3  x.  ( A  x.  C
) )  e.  CC )
9188, 89, 90sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 3  x.  ( A  x.  C )
)  e.  CC )
9287, 91subcld 9157 . . . . . . . . 9  |-  ( ph  ->  ( ( B ^
2 )  -  (
3  x.  ( A  x.  C ) ) )  e.  CC )
9386, 92eqeltrd 2357 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
94 expcl 11121 . . . . . . . 8  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
9593, 3, 94sylancl 643 . . . . . . 7  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
96 mulcl 8821 . . . . . . 7  |-  ( ( 4  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( 4  x.  ( M ^ 3 ) )  e.  CC )
9785, 95, 96sylancr 644 . . . . . 6  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  e.  CC )
9869sqcld 11243 . . . . . 6  |-  ( ph  ->  ( ( A ^
3 ) ^ 2 )  e.  CC )
99 sqne0 11170 . . . . . . . 8  |-  ( ( A ^ 3 )  e.  CC  ->  (
( ( A ^
3 ) ^ 2 )  =/=  0  <->  ( A ^ 3 )  =/=  0 ) )
10069, 99syl 15 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 3 ) ^
2 )  =/=  0  <->  ( A ^ 3 )  =/=  0 ) )
10174, 100mpbird 223 . . . . . 6  |-  ( ph  ->  ( ( A ^
3 ) ^ 2 )  =/=  0 )
10284, 97, 98, 101divsubdird 9575 . . . . 5  |-  ( ph  ->  ( ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) )  /  ( ( A ^ 3 ) ^ 2 ) )  =  ( ( ( N ^ 2 )  /  ( ( A ^ 3 ) ^
2 ) )  -  ( ( 4  x.  ( M ^ 3 ) )  /  (
( A ^ 3 ) ^ 2 ) ) ) )
10364, 69, 74sqdivd 11258 . . . . . 6  |-  ( ph  ->  ( ( N  / 
( A ^ 3 ) ) ^ 2 )  =  ( ( N ^ 2 )  /  ( ( A ^ 3 ) ^
2 ) ) )
104 2z 10054 . . . . . . . . . . . 12  |-  2  e.  ZZ
105104a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  ZZ )
1061, 16, 105expne0d 11251 . . . . . . . . . 10  |-  ( ph  ->  ( A ^ 2 )  =/=  0 )
10793, 59, 106, 38expdivd 11259 . . . . . . . . 9  |-  ( ph  ->  ( ( M  / 
( A ^ 2 ) ) ^ 3 )  =  ( ( M ^ 3 )  /  ( ( A ^ 2 ) ^
3 ) ) )
10843, 88mulcomi 8843 . . . . . . . . . . . 12  |-  ( 2  x.  3 )  =  ( 3  x.  2 )
109108oveq2i 5869 . . . . . . . . . . 11  |-  ( A ^ ( 2  x.  3 ) )  =  ( A ^ (
3  x.  2 ) )
11055a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  NN0 )
1111, 38, 110expmuld 11248 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ (
2  x.  3 ) )  =  ( ( A ^ 2 ) ^ 3 ) )
1121, 110, 38expmuld 11248 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ (
3  x.  2 ) )  =  ( ( A ^ 3 ) ^ 2 ) )
113109, 111, 1123eqtr3a 2339 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 ) ^ 3 )  =  ( ( A ^ 3 ) ^ 2 ) )
114113oveq2d 5874 . . . . . . . . 9  |-  ( ph  ->  ( ( M ^
3 )  /  (
( A ^ 2 ) ^ 3 ) )  =  ( ( M ^ 3 )  /  ( ( A ^ 3 ) ^
2 ) ) )
115107, 114eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( ( M  / 
( A ^ 2 ) ) ^ 3 )  =  ( ( M ^ 3 )  /  ( ( A ^ 3 ) ^
2 ) ) )
116115oveq2d 5874 . . . . . . 7  |-  ( ph  ->  ( 4  x.  (
( M  /  ( A ^ 2 ) ) ^ 3 ) )  =  ( 4  x.  ( ( M ^
3 )  /  (
( A ^ 3 ) ^ 2 ) ) ) )
11785a1i 10 . . . . . . . 8  |-  ( ph  ->  4  e.  CC )
118117, 95, 98, 101divassd 9571 . . . . . . 7  |-  ( ph  ->  ( ( 4  x.  ( M ^ 3 ) )  /  (
( A ^ 3 ) ^ 2 ) )  =  ( 4  x.  ( ( M ^ 3 )  / 
( ( A ^
3 ) ^ 2 ) ) ) )
119116, 118eqtr4d 2318 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( M  /  ( A ^ 2 ) ) ^ 3 ) )  =  ( ( 4  x.  ( M ^
3 ) )  / 
( ( A ^
3 ) ^ 2 ) ) )
120103, 119oveq12d 5876 . . . . 5  |-  ( ph  ->  ( ( ( N  /  ( A ^
3 ) ) ^
2 )  -  (
4  x.  ( ( M  /  ( A ^ 2 ) ) ^ 3 ) ) )  =  ( ( ( N ^ 2 )  /  ( ( A ^ 3 ) ^ 2 ) )  -  ( ( 4  x.  ( M ^
3 ) )  / 
( ( A ^
3 ) ^ 2 ) ) ) )
121102, 120eqtr4d 2318 . . . 4  |-  ( ph  ->  ( ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) )  /  ( ( A ^ 3 ) ^ 2 ) )  =  ( ( ( N  /  ( A ^ 3 ) ) ^ 2 )  -  ( 4  x.  (
( M  /  ( A ^ 2 ) ) ^ 3 ) ) ) )
12281, 83, 1213eqtrd 2319 . . 3  |-  ( ph  ->  ( ( G  / 
( A ^ 3 ) ) ^ 2 )  =  ( ( ( N  /  ( A ^ 3 ) ) ^ 2 )  -  ( 4  x.  (
( M  /  ( A ^ 2 ) ) ^ 3 ) ) ) )
12387, 91, 59, 106divsubdird 9575 . . . 4  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C )
) )  /  ( A ^ 2 ) )  =  ( ( ( B ^ 2 )  /  ( A ^
2 ) )  -  ( ( 3  x.  ( A  x.  C
) )  /  ( A ^ 2 ) ) ) )
12486oveq1d 5873 . . . 4  |-  ( ph  ->  ( M  /  ( A ^ 2 ) )  =  ( ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) )  / 
( A ^ 2 ) ) )
1257, 1, 16sqdivd 11258 . . . . 5  |-  ( ph  ->  ( ( B  /  A ) ^ 2 )  =  ( ( B ^ 2 )  /  ( A ^
2 ) ) )
1261sqvald 11242 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
127126oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( ( A  x.  C )  /  ( A ^ 2 ) )  =  ( ( A  x.  C )  / 
( A  x.  A
) ) )
12811, 1, 1, 16, 16divcan5d 9562 . . . . . . . 8  |-  ( ph  ->  ( ( A  x.  C )  /  ( A  x.  A )
)  =  ( C  /  A ) )
129127, 128eqtr2d 2316 . . . . . . 7  |-  ( ph  ->  ( C  /  A
)  =  ( ( A  x.  C )  /  ( A ^
2 ) ) )
130129oveq2d 5874 . . . . . 6  |-  ( ph  ->  ( 3  x.  ( C  /  A ) )  =  ( 3  x.  ( ( A  x.  C )  /  ( A ^ 2 ) ) ) )
13188a1i 10 . . . . . . 7  |-  ( ph  ->  3  e.  CC )
132131, 89, 59, 106divassd 9571 . . . . . 6  |-  ( ph  ->  ( ( 3  x.  ( A  x.  C
) )  /  ( A ^ 2 ) )  =  ( 3  x.  ( ( A  x.  C )  /  ( A ^ 2 ) ) ) )
133130, 132eqtr4d 2318 . . . . 5  |-  ( ph  ->  ( 3  x.  ( C  /  A ) )  =  ( ( 3  x.  ( A  x.  C ) )  / 
( A ^ 2 ) ) )
134125, 133oveq12d 5876 . . . 4  |-  ( ph  ->  ( ( ( B  /  A ) ^
2 )  -  (
3  x.  ( C  /  A ) ) )  =  ( ( ( B ^ 2 )  /  ( A ^ 2 ) )  -  ( ( 3  x.  ( A  x.  C ) )  / 
( A ^ 2 ) ) ) )
135123, 124, 1343eqtr4d 2325 . . 3  |-  ( ph  ->  ( M  /  ( A ^ 2 ) )  =  ( ( ( B  /  A ) ^ 2 )  -  ( 3  x.  ( C  /  A ) ) ) )
13654, 62, 69, 74divdird 9574 . . . 4  |-  ( ph  ->  ( ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) )  /  ( A ^ 3 ) )  =  ( ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  / 
( A ^ 3 ) )  +  ( (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  /  ( A ^ 3 ) ) ) )
13742oveq1d 5873 . . . 4  |-  ( ph  ->  ( N  /  ( A ^ 3 ) )  =  ( ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) )  /  ( A ^ 3 ) ) )
1387, 1, 16, 38expdivd 11259 . . . . . . . . 9  |-  ( ph  ->  ( ( B  /  A ) ^ 3 )  =  ( ( B ^ 3 )  /  ( A ^
3 ) ) )
139138oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  (
( B  /  A
) ^ 3 ) )  =  ( 2  x.  ( ( B ^ 3 )  / 
( A ^ 3 ) ) ) )
14067, 45, 69, 74divassd 9571 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  ( B ^ 3 ) )  /  ( A ^ 3 ) )  =  ( 2  x.  ( ( B ^
3 )  /  ( A ^ 3 ) ) ) )
141139, 140eqtr4d 2318 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( B  /  A
) ^ 3 ) )  =  ( ( 2  x.  ( B ^ 3 ) )  /  ( A ^
3 ) ) )
14249a1i 10 . . . . . . . . 9  |-  ( ph  ->  9  e.  CC )
1431, 52mulcld 8855 . . . . . . . . 9  |-  ( ph  ->  ( A  x.  ( B  x.  C )
)  e.  CC )
144142, 143, 69, 74divassd 9571 . . . . . . . 8  |-  ( ph  ->  ( ( 9  x.  ( A  x.  ( B  x.  C )
) )  /  ( A ^ 3 ) )  =  ( 9  x.  ( ( A  x.  ( B  x.  C
) )  /  ( A ^ 3 ) ) ) )
145142, 1, 52mulassd 8858 . . . . . . . . 9  |-  ( ph  ->  ( ( 9  x.  A )  x.  ( B  x.  C )
)  =  ( 9  x.  ( A  x.  ( B  x.  C
) ) ) )
146145oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( ( ( 9  x.  A )  x.  ( B  x.  C
) )  /  ( A ^ 3 ) )  =  ( ( 9  x.  ( A  x.  ( B  x.  C
) ) )  / 
( A ^ 3 ) ) )
14752, 59, 1, 106, 16divcan5d 9562 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  ( B  x.  C
) )  /  ( A  x.  ( A ^ 2 ) ) )  =  ( ( B  x.  C )  /  ( A ^
2 ) ) )
148 df-3 9805 . . . . . . . . . . . . . 14  |-  3  =  ( 2  +  1 )
149148oveq2i 5869 . . . . . . . . . . . . 13  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
150 expp1 11110 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
1511, 55, 150sylancl 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
152149, 151syl5eq 2327 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 3 )  =  ( ( A ^ 2 )  x.  A ) )
15359, 1mulcomd 8856 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ^
2 )  x.  A
)  =  ( A  x.  ( A ^
2 ) ) )
154152, 153eqtrd 2315 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 3 )  =  ( A  x.  ( A ^
2 ) ) )
155154oveq2d 5874 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  ( B  x.  C
) )  /  ( A ^ 3 ) )  =  ( ( A  x.  ( B  x.  C ) )  / 
( A  x.  ( A ^ 2 ) ) ) )
1567, 1, 11, 1, 16, 16divmuldivd 9577 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  /  A )  x.  ( C  /  A ) )  =  ( ( B  x.  C )  / 
( A  x.  A
) ) )
157126oveq2d 5874 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B  x.  C )  /  ( A ^ 2 ) )  =  ( ( B  x.  C )  / 
( A  x.  A
) ) )
158156, 157eqtr4d 2318 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  /  A )  x.  ( C  /  A ) )  =  ( ( B  x.  C )  / 
( A ^ 2 ) ) )
159147, 155, 1583eqtr4rd 2326 . . . . . . . . 9  |-  ( ph  ->  ( ( B  /  A )  x.  ( C  /  A ) )  =  ( ( A  x.  ( B  x.  C ) )  / 
( A ^ 3 ) ) )
160159oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( 9  x.  (
( B  /  A
)  x.  ( C  /  A ) ) )  =  ( 9  x.  ( ( A  x.  ( B  x.  C ) )  / 
( A ^ 3 ) ) ) )
161144, 146, 1603eqtr4rd 2326 . . . . . . 7  |-  ( ph  ->  ( 9  x.  (
( B  /  A
)  x.  ( C  /  A ) ) )  =  ( ( ( 9  x.  A
)  x.  ( B  x.  C ) )  /  ( A ^
3 ) ) )
162141, 161oveq12d 5876 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( ( B  /  A ) ^ 3 ) )  -  (
9  x.  ( ( B  /  A )  x.  ( C  /  A ) ) ) )  =  ( ( ( 2  x.  ( B ^ 3 ) )  /  ( A ^
3 ) )  -  ( ( ( 9  x.  A )  x.  ( B  x.  C
) )  /  ( A ^ 3 ) ) ) )
16347, 53, 69, 74divsubdird 9575 . . . . . 6  |-  ( ph  ->  ( ( ( 2  x.  ( B ^
3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C )
) )  /  ( A ^ 3 ) )  =  ( ( ( 2  x.  ( B ^ 3 ) )  /  ( A ^
3 ) )  -  ( ( ( 9  x.  A )  x.  ( B  x.  C
) )  /  ( A ^ 3 ) ) ) )
164162, 163eqtr4d 2318 . . . . 5  |-  ( ph  ->  ( ( 2  x.  ( ( B  /  A ) ^ 3 ) )  -  (
9  x.  ( ( B  /  A )  x.  ( C  /  A ) ) ) )  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  / 
( A ^ 3 ) ) )
165152oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  D )  /  ( A ^ 3 ) )  =  ( ( ( A ^ 2 )  x.  D )  / 
( ( A ^
2 )  x.  A
) ) )
16613, 1, 59, 16, 106divcan5d 9562 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  x.  D )  /  (
( A ^ 2 )  x.  A ) )  =  ( D  /  A ) )
167165, 166eqtr2d 2316 . . . . . . 7  |-  ( ph  ->  ( D  /  A
)  =  ( ( ( A ^ 2 )  x.  D )  /  ( A ^
3 ) ) )
168167oveq2d 5874 . . . . . 6  |-  ( ph  ->  (; 2 7  x.  ( D  /  A ) )  =  (; 2 7  x.  (
( ( A ^
2 )  x.  D
)  /  ( A ^ 3 ) ) ) )
16958a1i 10 . . . . . . 7  |-  ( ph  -> ; 2
7  e.  CC )
170169, 60, 69, 74divassd 9571 . . . . . 6  |-  ( ph  ->  ( (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  /  ( A ^ 3 ) )  =  (; 2 7  x.  (
( ( A ^
2 )  x.  D
)  /  ( A ^ 3 ) ) ) )
171168, 170eqtr4d 2318 . . . . 5  |-  ( ph  ->  (; 2 7  x.  ( D  /  A ) )  =  ( (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  /  ( A ^ 3 ) ) )
172164, 171oveq12d 5876 . . . 4  |-  ( ph  ->  ( ( ( 2  x.  ( ( B  /  A ) ^
3 ) )  -  ( 9  x.  (
( B  /  A
)  x.  ( C  /  A ) ) ) )  +  (; 2
7  x.  ( D  /  A ) ) )  =  ( ( ( ( 2  x.  ( B ^ 3 ) )  -  (
( 9  x.  A
)  x.  ( B  x.  C ) ) )  /  ( A ^ 3 ) )  +  ( (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  /  ( A ^ 3 ) ) ) )
173136, 137, 1723eqtr4d 2325 . . 3  |-  ( ph  ->  ( N  /  ( A ^ 3 ) )  =  ( ( ( 2  x.  ( ( B  /  A ) ^ 3 ) )  -  ( 9  x.  ( ( B  /  A )  x.  ( C  /  A ) ) ) )  +  (; 2
7  x.  ( D  /  A ) ) ) )
174 cubic2.0 . . . 4  |-  ( ph  ->  T  =/=  0 )
17536, 1, 174, 16divne0d 9552 . . 3  |-  ( ph  ->  ( T  /  A
)  =/=  0 )
17633, 34, 35, 2, 37, 79, 80, 122, 135, 173, 175mcubic 20143 . 2  |-  ( ph  ->  ( ( ( ( X ^ 3 )  +  ( ( B  /  A )  x.  ( X ^ 2 ) ) )  +  ( ( ( C  /  A )  x.  X )  +  ( D  /  A ) ) )  =  0  <->  E. r  e.  CC  ( ( r ^
3 )  =  1  /\  X  =  -u ( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A
) ) )  +  ( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) ) )  /  3
) ) ) )
177 oveq1 5865 . . . . . . . 8  |-  ( r  =  0  ->  (
r ^ 3 )  =  ( 0 ^ 3 ) )
178 3nn 9878 . . . . . . . . 9  |-  3  e.  NN
179 0exp 11137 . . . . . . . . 9  |-  ( 3  e.  NN  ->  (
0 ^ 3 )  =  0 )
180178, 179ax-mp 8 . . . . . . . 8  |-  ( 0 ^ 3 )  =  0
181177, 180syl6eq 2331 . . . . . . 7  |-  ( r  =  0  ->  (
r ^ 3 )  =  0 )
182 ax-1ne0 8806 . . . . . . . . 9  |-  1  =/=  0
183182necomi 2528 . . . . . . . 8  |-  0  =/=  1
184183a1i 10 . . . . . . 7  |-  ( r  =  0  ->  0  =/=  1 )
185181, 184eqnetrd 2464 . . . . . 6  |-  ( r  =  0  ->  (
r ^ 3 )  =/=  1 )
186185necon2i 2493 . . . . 5  |-  ( ( r ^ 3 )  =  1  ->  r  =/=  0 )
187 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
r  e.  CC )
18836adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  T  e.  CC )
1891adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  A  e.  CC )
19016adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  A  =/=  0 )
191187, 188, 189, 190divassd 9571 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( r  x.  T )  /  A
)  =  ( r  x.  ( T  /  A ) ) )
192191eqcomd 2288 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( r  x.  ( T  /  A ) )  =  ( ( r  x.  T )  /  A ) )
193192oveq2d 5874 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( B  /  A )  +  ( r  x.  ( T  /  A ) ) )  =  ( ( B  /  A )  +  ( ( r  x.  T )  /  A ) ) )
1947adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  B  e.  CC )
195187, 188mulcld 8855 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( r  x.  T
)  e.  CC )
196194, 195, 189, 190divdird 9574 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( B  +  ( r  x.  T
) )  /  A
)  =  ( ( B  /  A )  +  ( ( r  x.  T )  /  A ) ) )
197193, 196eqtr4d 2318 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( B  /  A )  +  ( r  x.  ( T  /  A ) ) )  =  ( ( B  +  ( r  x.  T ) )  /  A ) )
19893adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  M  e.  CC )
199198, 189, 190divcld 9536 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( M  /  A
)  e.  CC )
200 simprr 733 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
r  =/=  0 )
201174adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  T  =/=  0 )
202187, 188, 200, 201mulne0d 9420 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( r  x.  T
)  =/=  0 )
203199, 195, 189, 202, 190divcan7d 9564 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( M  /  A )  /  A )  /  (
( r  x.  T
)  /  A ) )  =  ( ( M  /  A )  /  ( r  x.  T ) ) )
204198, 189, 189, 190, 190divdiv1d 9567 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( M  /  A )  /  A
)  =  ( M  /  ( A  x.  A ) ) )
205189sqvald 11242 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
206205oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( M  /  ( A ^ 2 ) )  =  ( M  / 
( A  x.  A
) ) )
207204, 206eqtr4d 2318 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( M  /  A )  /  A
)  =  ( M  /  ( A ^
2 ) ) )
208207, 191oveq12d 5876 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( M  /  A )  /  A )  /  (
( r  x.  T
)  /  A ) )  =  ( ( M  /  ( A ^ 2 ) )  /  ( r  x.  ( T  /  A
) ) ) )
209198, 189, 195, 190, 202divdiv32d 9561 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( M  /  A )  /  (
r  x.  T ) )  =  ( ( M  /  ( r  x.  T ) )  /  A ) )
210203, 208, 2093eqtr3d 2323 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) )  =  ( ( M  /  ( r  x.  T ) )  /  A ) )
211197, 210oveq12d 5876 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( B  /  A )  +  ( r  x.  ( T  /  A ) ) )  +  ( ( M  /  ( A ^ 2 ) )  /  ( r  x.  ( T  /  A
) ) ) )  =  ( ( ( B  +  ( r  x.  T ) )  /  A )  +  ( ( M  / 
( r  x.  T
) )  /  A
) ) )
212194, 195addcld 8854 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( B  +  ( r  x.  T ) )  e.  CC )
213198, 195, 202divcld 9536 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( M  /  (
r  x.  T ) )  e.  CC )
214212, 213, 189, 190divdird 9574 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  A
)  =  ( ( ( B  +  ( r  x.  T ) )  /  A )  +  ( ( M  /  ( r  x.  T ) )  /  A ) ) )
215211, 214eqtr4d 2318 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( B  /  A )  +  ( r  x.  ( T  /  A ) ) )  +  ( ( M  /  ( A ^ 2 ) )  /  ( r  x.  ( T  /  A
) ) ) )  =  ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  /  A ) )
216215oveq1d 5873 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A
) ) )  +  ( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) ) )  /  3
)  =  ( ( ( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  A )  /  3 ) )
217212, 213addcld 8854 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  e.  CC )
21888a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
3  e.  CC )
219 3ne0 9831 . . . . . . . . . . 11  |-  3  =/=  0
220219a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
3  =/=  0 )
221217, 189, 218, 190, 220divdiv1d 9567 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  /  A )  /  3
)  =  ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( A  x.  3 ) ) )
222 mulcom 8823 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  3  e.  CC )  ->  ( A  x.  3 )  =  ( 3  x.  A ) )
223189, 88, 222sylancl 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( A  x.  3 )  =  ( 3  x.  A ) )
224223oveq2d 5874 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  ( A  x.  3 ) )  =  ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )
225216, 221, 2243eqtrd 2319 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A
) ) )  +  ( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) ) )  /  3
)  =  ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )
226225negeqd 9046 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  ->  -u ( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A
) ) )  +  ( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) ) )  /  3
)  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )
227226eqeq2d 2294 . . . . . 6  |-  ( (
ph  /\  ( r  e.  CC  /\  r  =/=  0 ) )  -> 
( X  =  -u ( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A
) ) )  +  ( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) ) )  /  3
)  <->  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) )
228227anassrs 629 . . . . 5  |-  ( ( ( ph  /\  r  e.  CC )  /\  r  =/=  0 )  ->  ( X  =  -u ( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A ) ) )  +  ( ( M  /  ( A ^ 2 ) )  /  ( r  x.  ( T  /  A
) ) ) )  /  3 )  <->  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) ) )
229186, 228sylan2 460 . . . 4  |-  ( ( ( ph  /\  r  e.  CC )  /\  (
r ^ 3 )  =  1 )  -> 
( X  =  -u ( ( ( ( B  /  A )  +  ( r  x.  ( T  /  A
) ) )  +  ( ( M  / 
( A ^ 2 ) )  /  (
r  x.  ( T  /  A ) ) ) )  /  3
)  <->  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) )
230229pm5.32da 622 . . 3  |-  ( (
ph  /\  r  e.  CC )  ->  ( ( ( r ^ 3 )  =  1  /\  X  =  -u (
( ( ( B  /  A )  +  ( r  x.  ( T  /  A ) ) )  +  ( ( M  /  ( A ^ 2 ) )  /  ( r  x.  ( T  /  A
) ) ) )  /  3 ) )  <-> 
( ( r ^
3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) ) ) )
231230rexbidva 2560 . 2  |-  ( ph  ->  ( E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  = 
-u ( ( ( ( B  /  A
)  +  ( r  x.  ( T  /  A ) ) )  +  ( ( M  /  ( A ^
2 ) )  / 
( r  x.  ( T  /  A ) ) ) )  /  3
) )  <->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  = 
-u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) ) )
23232, 176, 2313bitrd 270 1  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  CC  (
( r ^ 3 )  =  1  /\  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   2c2 9795   3c3 9796   4c4 9797   7c7 9800   9c9 9802   NN0cn0 9965   ZZcz 10024  ;cdc 10124   ^cexp 11104
This theorem is referenced by:  cubic  20145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532
  Copyright terms: Public domain W3C validator