MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1val Unicode version

Theorem curry1val 6211
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
curry1.1  |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V )
) )
Assertion
Ref Expression
curry1val  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( G `  D
)  =  ( C F D ) )

Proof of Theorem curry1val
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 curry1.1 . . . 4  |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V )
) )
21curry1 6210 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  G  =  ( x  e.  B  |->  ( C F x ) ) )
32fveq1d 5527 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( G `  D
)  =  ( ( x  e.  B  |->  ( C F x ) ) `  D ) )
4 eqid 2283 . . . . . . . . . 10  |-  ( x  e.  B  |->  ( C F x ) )  =  ( x  e.  B  |->  ( C F x ) )
54dmmptss 5169 . . . . . . . . 9  |-  dom  (
x  e.  B  |->  ( C F x ) )  C_  B
65sseli 3176 . . . . . . . 8  |-  ( D  e.  dom  ( x  e.  B  |->  ( C F x ) )  ->  D  e.  B
)
76con3i 127 . . . . . . 7  |-  ( -.  D  e.  B  ->  -.  D  e.  dom  ( x  e.  B  |->  ( C F x ) ) )
8 ndmfv 5552 . . . . . . 7  |-  ( -.  D  e.  dom  (
x  e.  B  |->  ( C F x ) )  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  (/) )
97, 8syl 15 . . . . . 6  |-  ( -.  D  e.  B  -> 
( ( x  e.  B  |->  ( C F x ) ) `  D )  =  (/) )
109adantl 452 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  /\  -.  D  e.  B
)  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  (/) )
11 fndm 5343 . . . . . . 7  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
1211adantr 451 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  dom  F  =  ( A  X.  B ) )
13 simpr 447 . . . . . . 7  |-  ( ( C  e.  A  /\  D  e.  B )  ->  D  e.  B )
1413con3i 127 . . . . . 6  |-  ( -.  D  e.  B  ->  -.  ( C  e.  A  /\  D  e.  B
) )
15 ndmovg 6003 . . . . . 6  |-  ( ( dom  F  =  ( A  X.  B )  /\  -.  ( C  e.  A  /\  D  e.  B ) )  -> 
( C F D )  =  (/) )
1612, 14, 15syl2an 463 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  /\  -.  D  e.  B
)  ->  ( C F D )  =  (/) )
1710, 16eqtr4d 2318 . . . 4  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  /\  -.  D  e.  B
)  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  ( C F D ) )
1817ex 423 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( -.  D  e.  B  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  ( C F D ) ) )
19 oveq2 5866 . . . 4  |-  ( x  =  D  ->  ( C F x )  =  ( C F D ) )
20 ovex 5883 . . . 4  |-  ( C F D )  e. 
_V
2119, 4, 20fvmpt 5602 . . 3  |-  ( D  e.  B  ->  (
( x  e.  B  |->  ( C F x ) ) `  D
)  =  ( C F D ) )
2218, 21pm2.61d2 152 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( ( x  e.  B  |->  ( C F x ) ) `  D )  =  ( C F D ) )
233, 22eqtrd 2315 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( G `  D
)  =  ( C F D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   {csn 3640    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   dom cdm 4689    |` cres 4691    o. ccom 4693    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   2ndc2nd 6121
This theorem is referenced by:  nvinvfval  21198  hhssabloi  21839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-1st 6122  df-2nd 6123
  Copyright terms: Public domain W3C validator