MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmpub Unicode version

Theorem cvgcmpub 12483
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1  |-  Z  =  ( ZZ>= `  M )
cvgcmp.2  |-  ( ph  ->  N  e.  Z )
cvgcmp.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
cvgcmp.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
cvgcmpub.5  |-  ( ph  ->  seq  M (  +  ,  F )  ~~>  A )
cvgcmpub.6  |-  ( ph  ->  seq  M (  +  ,  G )  ~~>  B )
cvgcmpub.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
Assertion
Ref Expression
cvgcmpub  |-  ( ph  ->  B  <_  A )
Distinct variable groups:    k, F    k, G    ph, k    k, M   
k, N    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem cvgcmpub
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 cvgcmp.2 . . . 4  |-  ( ph  ->  N  e.  Z )
32, 1syl6eleq 2456 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzel2 10386 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 15 . 2  |-  ( ph  ->  M  e.  ZZ )
6 cvgcmpub.6 . 2  |-  ( ph  ->  seq  M (  +  ,  G )  ~~>  B )
7 cvgcmpub.5 . 2  |-  ( ph  ->  seq  M (  +  ,  F )  ~~>  A )
8 cvgcmp.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
91, 5, 8serfre 11239 . . 3  |-  ( ph  ->  seq  M (  +  ,  G ) : Z --> RR )
10 ffvelrn 5770 . . 3  |-  ( (  seq  M (  +  ,  G ) : Z --> RR  /\  n  e.  Z )  ->  (  seq  M (  +  ,  G ) `  n
)  e.  RR )
119, 10sylan 457 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq  M (  +  ,  G ) `  n
)  e.  RR )
12 cvgcmp.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
131, 5, 12serfre 11239 . . 3  |-  ( ph  ->  seq  M (  +  ,  F ) : Z --> RR )
14 ffvelrn 5770 . . 3  |-  ( (  seq  M (  +  ,  F ) : Z --> RR  /\  n  e.  Z )  ->  (  seq  M (  +  ,  F ) `  n
)  e.  RR )
1513, 14sylan 457 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq  M (  +  ,  F ) `  n
)  e.  RR )
16 simpr 447 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1716, 1syl6eleq 2456 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
18 simpl 443 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ph )
19 elfzuz 10947 . . . . 5  |-  ( k  e.  ( M ... n )  ->  k  e.  ( ZZ>= `  M )
)
2019, 1syl6eleqr 2457 . . . 4  |-  ( k  e.  ( M ... n )  ->  k  e.  Z )
2118, 20, 8syl2an 463 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( G `  k )  e.  RR )
2218, 20, 12syl2an 463 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( F `  k )  e.  RR )
23 cvgcmpub.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
2418, 20, 23syl2an 463 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( M ... n
) )  ->  ( G `  k )  <_  ( F `  k
) )
2517, 21, 22, 24serle 11265 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq  M (  +  ,  G ) `  n
)  <_  (  seq  M (  +  ,  F
) `  n )
)
261, 5, 6, 7, 11, 15, 25climle 12320 1  |-  ( ph  ->  B  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   class class class wbr 4125   -->wf 5354   ` cfv 5358  (class class class)co 5981   RRcr 8883    + caddc 8887    <_ cle 9015   ZZcz 10175   ZZ>=cuz 10381   ...cfz 10935    seq cseq 11210    ~~> cli 12165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-fz 10936  df-fzo 11026  df-fl 11089  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-clim 12169  df-rlim 12170
  Copyright terms: Public domain W3C validator