Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch1 Unicode version

Theorem cvlatexch1 29451
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l  |-  .<_  =  ( le `  K )
cvlatexch.j  |-  .\/  =  ( join `  K )
cvlatexch.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlatexch1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .<_  ( R  .\/  Q
)  ->  Q  .<_  ( R  .\/  P ) ) )

Proof of Theorem cvlatexch1
StepHypRef Expression
1 cvlatexch.l . . 3  |-  .<_  =  ( le `  K )
2 cvlatexch.j . . 3  |-  .\/  =  ( join `  K )
3 cvlatexch.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 3cvlatexchb1 29449 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .<_  ( R  .\/  Q
)  <->  ( R  .\/  P )  =  ( R 
.\/  Q ) ) )
5 cvllat 29441 . . . . 5  |-  ( K  e.  CvLat  ->  K  e.  Lat )
653ad2ant1 978 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  K  e.  Lat )
7 simp23 992 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  R  e.  A )
8 eqid 2387 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
98, 3atbase 29404 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
107, 9syl 16 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  R  e.  ( Base `  K )
)
11 simp22 991 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  Q  e.  A )
128, 3atbase 29404 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1311, 12syl 16 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  Q  e.  ( Base `  K )
)
148, 1, 2latlej2 14417 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  Q  .<_  ( R  .\/  Q
) )
156, 10, 13, 14syl3anc 1184 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  Q  .<_  ( R  .\/  Q ) )
16 breq2 4157 . . 3  |-  ( ( R  .\/  P )  =  ( R  .\/  Q )  ->  ( Q  .<_  ( R  .\/  P
)  <->  Q  .<_  ( R 
.\/  Q ) ) )
1715, 16syl5ibrcom 214 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( ( R  .\/  P )  =  ( R  .\/  Q
)  ->  Q  .<_  ( R  .\/  P ) ) )
184, 17sylbid 207 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .<_  ( R  .\/  Q
)  ->  Q  .<_  ( R  .\/  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   Latclat 14401   Atomscatm 29378   CvLatclc 29380
This theorem is referenced by:  cvlatexch2  29452  cvlsupr2  29458  hlatexch1  29509  4atex  30190  cdleme20zN  30415  cdleme20y  30416  cdleme19a  30417  cdleme21b  30440  cdleme21c  30441  cdleme22g  30462  cdlemf1  30675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-join 14360  df-lat 14402  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437
  Copyright terms: Public domain W3C validator