Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch3 Structured version   Unicode version

Theorem cvlexch3 30031
Description: An atomic covering lattice has the exchange property. (atexch 23874 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlexch3.b  |-  B  =  ( Base `  K
)
cvlexch3.l  |-  .<_  =  ( le `  K )
cvlexch3.j  |-  .\/  =  ( join `  K )
cvlexch3.m  |-  ./\  =  ( meet `  K )
cvlexch3.z  |-  .0.  =  ( 0. `  K )
cvlexch3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlexch3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  ( X 
.\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) )

Proof of Theorem cvlexch3
StepHypRef Expression
1 cvlatl 30024 . . . . 5  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
21adantr 452 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  K  e.  AtLat
)
3 simpr1 963 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  P  e.  A )
4 simpr3 965 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  X  e.  B )
5 cvlexch3.b . . . . 5  |-  B  =  ( Base `  K
)
6 cvlexch3.l . . . . 5  |-  .<_  =  ( le `  K )
7 cvlexch3.m . . . . 5  |-  ./\  =  ( meet `  K )
8 cvlexch3.z . . . . 5  |-  .0.  =  ( 0. `  K )
9 cvlexch3.a . . . . 5  |-  A  =  ( Atoms `  K )
105, 6, 7, 8, 9atnle 30016 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  .0.  ) )
112, 3, 4, 10syl3anc 1184 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  .0.  ) )
12 cvlexch3.j . . . . 5  |-  .\/  =  ( join `  K )
135, 6, 12, 9cvlexch1 30027 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X 
.\/  P ) ) )
14133expia 1155 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( -.  P  .<_  X  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) ) )
1511, 14sylbird 227 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( ( P  ./\  X )  =  .0.  ->  ( P  .<_  ( X  .\/  Q
)  ->  Q  .<_  ( X  .\/  P ) ) ) )
16153impia 1150 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  ( X 
.\/  Q )  ->  Q  .<_  ( X  .\/  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   joincjn 14391   meetcmee 14392   0.cp0 14456   Atomscatm 29962   AtLatcal 29963   CvLatclc 29964
This theorem is referenced by:  hlexch3  30089
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-glb 14422  df-meet 14424  df-p0 14458  df-lat 14465  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021
  Copyright terms: Public domain W3C validator