Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexchb1 Unicode version

Theorem cvlexchb1 28893
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b  |-  B  =  ( Base `  K
)
cvlexch.l  |-  .<_  =  ( le `  K )
cvlexch.j  |-  .\/  =  ( join `  K )
cvlexch.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlexchb1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  <-> 
( X  .\/  P
)  =  ( X 
.\/  Q ) ) )

Proof of Theorem cvlexchb1
StepHypRef Expression
1 cvllat 28889 . . . . . . . . 9  |-  ( K  e.  CvLat  ->  K  e.  Lat )
21adantr 451 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  K  e.  Lat )
3 simpr3 963 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  X  e.  B )
4 simpr2 962 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  Q  e.  A )
5 cvlexch.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
6 cvlexch.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
75, 6atbase 28852 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  B )
84, 7syl 15 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  Q  e.  B )
9 cvlexch.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
10 cvlexch.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
115, 9, 10latlej1 14166 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  X  .<_  ( X  .\/  Q ) )
122, 3, 8, 11syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  X  .<_  ( X  .\/  Q ) )
13123adant3 975 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  X  .<_  ( X 
.\/  Q ) )
1413adantr 451 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  X  .<_  ( X  .\/  Q
) )
15 simpr 447 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  P  .<_  ( X  .\/  Q
) )
16 simpr1 961 . . . . . . . . 9  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  P  e.  A )
175, 6atbase 28852 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  B )
1816, 17syl 15 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  P  e.  B )
195, 10latjcl 14156 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  ( X  .\/  Q
)  e.  B )
202, 3, 8, 19syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( X  .\/  Q )  e.  B
)
215, 9, 10latjle12 14168 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  P  e.  B  /\  ( X  .\/  Q
)  e.  B ) )  ->  ( ( X  .<_  ( X  .\/  Q )  /\  P  .<_  ( X  .\/  Q ) )  <->  ( X  .\/  P )  .<_  ( X  .\/  Q ) ) )
222, 3, 18, 20, 21syl13anc 1184 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( ( X  .<_  ( X  .\/  Q )  /\  P  .<_  ( X  .\/  Q ) )  <->  ( X  .\/  P )  .<_  ( X  .\/  Q ) ) )
23223adant3 975 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( ( X 
.<_  ( X  .\/  Q
)  /\  P  .<_  ( X  .\/  Q ) )  <->  ( X  .\/  P )  .<_  ( X  .\/  Q ) ) )
2423adantr 451 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X  .<_  ( X 
.\/  Q )  /\  P  .<_  ( X  .\/  Q ) )  <->  ( X  .\/  P )  .<_  ( X 
.\/  Q ) ) )
2514, 15, 24mpbi2and 887 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  P )  .<_  ( X  .\/  Q ) )
265, 9, 10latlej1 14166 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  X  .<_  ( X  .\/  P ) )
272, 3, 18, 26syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  X  .<_  ( X  .\/  P ) )
28273adant3 975 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  X  .<_  ( X 
.\/  P ) )
2928adantr 451 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  X  .<_  ( X  .\/  P
) )
305, 9, 10, 6cvlexch1 28891 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X 
.\/  P ) ) )
3130imp 418 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  Q  .<_  ( X  .\/  P
) )
325, 10latjcl 14156 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  .\/  P
)  e.  B )
332, 3, 18, 32syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( X  .\/  P )  e.  B
)
345, 9, 10latjle12 14168 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Q  e.  B  /\  ( X  .\/  P
)  e.  B ) )  ->  ( ( X  .<_  ( X  .\/  P )  /\  Q  .<_  ( X  .\/  P ) )  <->  ( X  .\/  Q )  .<_  ( X  .\/  P ) ) )
352, 3, 8, 33, 34syl13anc 1184 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( ( X  .<_  ( X  .\/  P )  /\  Q  .<_  ( X  .\/  P ) )  <->  ( X  .\/  Q )  .<_  ( X  .\/  P ) ) )
36353adant3 975 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( ( X 
.<_  ( X  .\/  P
)  /\  Q  .<_  ( X  .\/  P ) )  <->  ( X  .\/  Q )  .<_  ( X  .\/  P ) ) )
3736adantr 451 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X  .<_  ( X 
.\/  P )  /\  Q  .<_  ( X  .\/  P ) )  <->  ( X  .\/  Q )  .<_  ( X 
.\/  P ) ) )
3829, 31, 37mpbi2and 887 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  Q )  .<_  ( X  .\/  P ) )
395, 9latasymb 14160 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( X  .\/  P )  e.  B  /\  ( X  .\/  Q )  e.  B )  ->  (
( ( X  .\/  P )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  P ) )  <->  ( X  .\/  P )  =  ( X 
.\/  Q ) ) )
402, 33, 20, 39syl3anc 1182 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( (
( X  .\/  P
)  .<_  ( X  .\/  Q )  /\  ( X 
.\/  Q )  .<_  ( X  .\/  P ) )  <->  ( X  .\/  P )  =  ( X 
.\/  Q ) ) )
41403adant3 975 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( ( ( X  .\/  P ) 
.<_  ( X  .\/  Q
)  /\  ( X  .\/  Q )  .<_  ( X 
.\/  P ) )  <-> 
( X  .\/  P
)  =  ( X 
.\/  Q ) ) )
4241adantr 451 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( ( X  .\/  P )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  P ) )  <->  ( X  .\/  P )  =  ( X 
.\/  Q ) ) )
4325, 38, 42mpbi2and 887 . . 3  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  -.  P  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  P )  =  ( X  .\/  Q
) )
4443ex 423 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  ( X  .\/  P )  =  ( X 
.\/  Q ) ) )
455, 9, 10latlej2 14167 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  P  .<_  ( X  .\/  P ) )
462, 3, 18, 45syl3anc 1182 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  P  .<_  ( X  .\/  P ) )
47 breq2 4027 . . . 4  |-  ( ( X  .\/  P )  =  ( X  .\/  Q )  ->  ( P  .<_  ( X  .\/  P
)  <->  P  .<_  ( X 
.\/  Q ) ) )
4846, 47syl5ibcom 211 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( ( X  .\/  P )  =  ( X  .\/  Q
)  ->  P  .<_  ( X  .\/  Q ) ) )
49483adant3 975 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( ( X 
.\/  P )  =  ( X  .\/  Q
)  ->  P  .<_  ( X  .\/  Q ) ) )
5044, 49impbid 183 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  <-> 
( X  .\/  P
)  =  ( X 
.\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 28826   CvLatclc 28828
This theorem is referenced by:  cvlexchb2  28894  cvlexch4N  28896  cvlatexchb1  28897  cvlcvr1  28902  hlexchb1  28946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-join 14110  df-lat 14152  df-ats 28830  df-atl 28861  df-cvlat 28885
  Copyright terms: Public domain W3C validator