Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr2 Unicode version

Theorem cvlsupr2 30155
Description: Two equivalent ways of expressing that  R is a superposition of  P and  Q. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr2.a  |-  A  =  ( Atoms `  K )
cvlsupr2.l  |-  .<_  =  ( le `  K )
cvlsupr2.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
cvlsupr2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )

Proof of Theorem cvlsupr2
StepHypRef Expression
1 simpl3 960 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  P  =/=  Q )
21necomd 2542 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  Q  =/=  P )
3 simplr 731 . . . . . . . . 9  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  P )  ->  ( P  .\/  R )  =  ( Q  .\/  R
) )
4 oveq2 5882 . . . . . . . . . . . 12  |-  ( R  =  P  ->  ( P  .\/  R )  =  ( P  .\/  P
) )
5 oveq2 5882 . . . . . . . . . . . 12  |-  ( R  =  P  ->  ( Q  .\/  R )  =  ( Q  .\/  P
) )
64, 5eqeq12d 2310 . . . . . . . . . . 11  |-  ( R  =  P  ->  (
( P  .\/  R
)  =  ( Q 
.\/  R )  <->  ( P  .\/  P )  =  ( Q  .\/  P ) ) )
7 eqcom 2298 . . . . . . . . . . 11  |-  ( ( P  .\/  P )  =  ( Q  .\/  P )  <->  ( Q  .\/  P )  =  ( P 
.\/  P ) )
86, 7syl6bb 252 . . . . . . . . . 10  |-  ( R  =  P  ->  (
( P  .\/  R
)  =  ( Q 
.\/  R )  <->  ( Q  .\/  P )  =  ( P  .\/  P ) ) )
98adantl 452 . . . . . . . . 9  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  P )  ->  (
( P  .\/  R
)  =  ( Q 
.\/  R )  <->  ( Q  .\/  P )  =  ( P  .\/  P ) ) )
103, 9mpbid 201 . . . . . . . 8  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  P )  ->  ( Q  .\/  P )  =  ( P  .\/  P
) )
11 simpl1 958 . . . . . . . . . . 11  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  K  e.  CvLat )
12 cvllat 30138 . . . . . . . . . . 11  |-  ( K  e.  CvLat  ->  K  e.  Lat )
1311, 12syl 15 . . . . . . . . . 10  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  K  e.  Lat )
14 simpl21 1033 . . . . . . . . . . 11  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  P  e.  A )
15 eqid 2296 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
16 cvlsupr2.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
1715, 16atbase 30101 . . . . . . . . . . 11  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1814, 17syl 15 . . . . . . . . . 10  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  P  e.  ( Base `  K
) )
19 cvlsupr2.j . . . . . . . . . . 11  |-  .\/  =  ( join `  K )
2015, 19latjidm 14196 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K ) )  -> 
( P  .\/  P
)  =  P )
2113, 18, 20syl2anc 642 . . . . . . . . 9  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( P  .\/  P )  =  P )
2221adantr 451 . . . . . . . 8  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  P )  ->  ( P  .\/  P )  =  P )
2310, 22eqtrd 2328 . . . . . . 7  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  P )  ->  ( Q  .\/  P )  =  P )
2423ex 423 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( R  =  P  ->  ( Q  .\/  P )  =  P ) )
25 simpl22 1034 . . . . . . . . 9  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  Q  e.  A )
2615, 16atbase 30101 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2725, 26syl 15 . . . . . . . 8  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  Q  e.  ( Base `  K
) )
28 cvlsupr2.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
2915, 28, 19latleeqj1 14185 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) )  ->  ( Q  .<_  P  <->  ( Q  .\/  P )  =  P ) )
3013, 27, 18, 29syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( Q  .<_  P  <->  ( Q  .\/  P )  =  P ) )
31 cvlatl 30137 . . . . . . . . 9  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
3211, 31syl 15 . . . . . . . 8  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  K  e.  AtLat )
3328, 16atcmp 30123 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  P  e.  A )  ->  ( Q  .<_  P  <->  Q  =  P ) )
3432, 25, 14, 33syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( Q  .<_  P  <->  Q  =  P ) )
3530, 34bitr3d 246 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  (
( Q  .\/  P
)  =  P  <->  Q  =  P ) )
3624, 35sylibd 205 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( R  =  P  ->  Q  =  P ) )
3736necon3d 2497 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( Q  =/=  P  ->  R  =/=  P ) )
382, 37mpd 14 . . 3  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  R  =/=  P )
39 simplr 731 . . . . . . . . 9  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  Q )  ->  ( P  .\/  R )  =  ( Q  .\/  R
) )
40 oveq2 5882 . . . . . . . . . . 11  |-  ( R  =  Q  ->  ( P  .\/  R )  =  ( P  .\/  Q
) )
41 oveq2 5882 . . . . . . . . . . 11  |-  ( R  =  Q  ->  ( Q  .\/  R )  =  ( Q  .\/  Q
) )
4240, 41eqeq12d 2310 . . . . . . . . . 10  |-  ( R  =  Q  ->  (
( P  .\/  R
)  =  ( Q 
.\/  R )  <->  ( P  .\/  Q )  =  ( Q  .\/  Q ) ) )
4342adantl 452 . . . . . . . . 9  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  Q )  ->  (
( P  .\/  R
)  =  ( Q 
.\/  R )  <->  ( P  .\/  Q )  =  ( Q  .\/  Q ) ) )
4439, 43mpbid 201 . . . . . . . 8  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  Q )  ->  ( P  .\/  Q )  =  ( Q  .\/  Q
) )
4515, 19latjidm 14196 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K ) )  -> 
( Q  .\/  Q
)  =  Q )
4613, 27, 45syl2anc 642 . . . . . . . . 9  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( Q  .\/  Q )  =  Q )
4746adantr 451 . . . . . . . 8  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  Q )  ->  ( Q  .\/  Q )  =  Q )
4844, 47eqtrd 2328 . . . . . . 7  |-  ( ( ( ( K  e. 
CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q )  /\  ( P  .\/  R )  =  ( Q  .\/  R
) )  /\  R  =  Q )  ->  ( P  .\/  Q )  =  Q )
4948ex 423 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( R  =  Q  ->  ( P  .\/  Q )  =  Q ) )
5015, 28, 19latleeqj1 14185 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .<_  Q  <->  ( P  .\/  Q )  =  Q ) )
5113, 18, 27, 50syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( P  .<_  Q  <->  ( P  .\/  Q )  =  Q ) )
5228, 16atcmp 30123 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .<_  Q  <->  P  =  Q ) )
5332, 14, 25, 52syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( P  .<_  Q  <->  P  =  Q ) )
5451, 53bitr3d 246 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  (
( P  .\/  Q
)  =  Q  <->  P  =  Q ) )
5549, 54sylibd 205 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( R  =  Q  ->  P  =  Q ) )
5655necon3d 2497 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( P  =/=  Q  ->  R  =/=  Q ) )
571, 56mpd 14 . . 3  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  R  =/=  Q )
58 simpl23 1035 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  R  e.  A )
5915, 16atbase 30101 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
6058, 59syl 15 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  R  e.  ( Base `  K
) )
6115, 28, 19latlej1 14182 . . . . . 6  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  Q  .<_  ( Q  .\/  R
) )
6213, 27, 60, 61syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  Q  .<_  ( Q  .\/  R
) )
63 simpr 447 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( P  .\/  R )  =  ( Q  .\/  R
) )
6462, 63breqtrrd 4065 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  Q  .<_  ( P  .\/  R
) )
6528, 19, 16cvlatexch1 30148 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  Q  =/=  P
)  ->  ( Q  .<_  ( P  .\/  R
)  ->  R  .<_  ( P  .\/  Q ) ) )
6611, 25, 58, 14, 2, 65syl131anc 1195 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( Q  .<_  ( P  .\/  R )  ->  R  .<_  ( P  .\/  Q ) ) )
6764, 66mpd 14 . . 3  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  R  .<_  ( P  .\/  Q
) )
6838, 57, 673jca 1132 . 2  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) )  ->  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )
69 simpr3 963 . . 3  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
70 simpl1 958 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  CvLat )
7170, 12syl 15 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
72 simpl21 1033 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  A )
7372, 17syl 15 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  ( Base `  K
) )
74 simpl22 1034 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  A )
7574, 26syl 15 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  ( Base `  K
) )
7615, 19latjcom 14181 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
7771, 73, 75, 76syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
7877breq2d 4051 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( P  .\/  Q )  <->  R  .<_  ( Q 
.\/  P ) ) )
79 simpl23 1035 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
80 simpr2 962 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  =/=  Q )
8128, 19, 16cvlatexch1 30148 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( R  e.  A  /\  P  e.  A  /\  Q  e.  A )  /\  R  =/=  Q
)  ->  ( R  .<_  ( Q  .\/  P
)  ->  P  .<_  ( Q  .\/  R ) ) )
8270, 79, 72, 74, 80, 81syl131anc 1195 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( Q  .\/  P )  ->  P  .<_  ( Q  .\/  R ) ) )
83 simpr1 961 . . . . . . 7  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  =/=  P )
8483necomd 2542 . . . . . 6  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  R )
8528, 19, 16cvlatexchb2 30147 . . . . . 6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  R
)  ->  ( P  .<_  ( Q  .\/  R
)  <->  ( P  .\/  R )  =  ( Q 
.\/  R ) ) )
8670, 72, 74, 79, 84, 85syl131anc 1195 . . . . 5  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( P  .<_  ( Q  .\/  R )  <->  ( P  .\/  R )  =  ( Q 
.\/  R ) ) )
8782, 86sylibd 205 . . . 4  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( Q  .\/  P )  ->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
8878, 87sylbid 206 . . 3  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .<_  ( P  .\/  Q )  ->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
8969, 88mpd 14 . 2  |-  ( ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  R
) )
9068, 89impbida 805 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   Atomscatm 30075   AtLatcal 30076   CvLatclc 30077
This theorem is referenced by:  cvlsupr3  30156  cvlsupr4  30157  cvlsupr5  30158  cvlsupr6  30159  4atexlemex2  30882  4atex  30887  4atex3  30892  cdleme02N  31033  cdleme0ex2N  31035  cdleme0moN  31036  cdleme0nex  31101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-join 14126  df-lat 14168  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134
  Copyright terms: Public domain W3C validator