Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcn Structured version   Unicode version

Theorem cvmcn 24951
 Description: A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.)
Assertion
Ref Expression
cvmcn CovMap

Proof of Theorem cvmcn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . 4 t t t t
2 eqid 2438 . . . 4
31, 2iscvm 24948 . . 3 CovMap t t
43simplbi 448 . 2 CovMap
54simp3d 972 1 CovMap
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726   wne 2601  wral 2707  wrex 2708  crab 2711   cdif 3319   cin 3321  c0 3630  cpw 3801  csn 3816  cuni 4017   cmpt 4268  ccnv 4879   cres 4882  cima 4883  cfv 5456  (class class class)co 6083   ↾t crest 13650  ctop 16960   ccn 17290   chmeo 17787   CovMap ccvm 24944 This theorem is referenced by:  cvmsss2  24963  cvmseu  24965  cvmopnlem  24967  cvmfolem  24968  cvmliftmolem1  24970  cvmliftmolem2  24971  cvmliftlem6  24979  cvmliftlem7  24980  cvmliftlem8  24981  cvmliftlem9  24982  cvmlift2lem7  24998  cvmlift2lem9  25000  cvmliftphtlem  25006  cvmlift3lem5  25012  cvmlift3lem6  25013  cvmlift3lem9  25016 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-cvm 24945
 Copyright terms: Public domain W3C validator