Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov2 Unicode version

Theorem cvmcov2 23821
Description: The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmcov2  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `  x )  =/=  (/) ) )
Distinct variable groups:    k, s, u, v, x, C    k, F, s, u, v, x    P, k, x    k, J, s, u, v, x   
x, S    U, k,
s, u, v, x
Allowed substitution hints:    P( v, u, s)    S( v, u, k, s)

Proof of Theorem cvmcov2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  F  e.  ( C CovMap  J ) )
2 simp3 957 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  P  e.  U )
3 simp2 956 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  U  e.  J )
4 elunii 3848 . . . 4  |-  ( ( P  e.  U  /\  U  e.  J )  ->  P  e.  U. J
)
52, 3, 4syl2anc 642 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  P  e.  U. J )
6 cvmcov.1 . . . 4  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
7 eqid 2296 . . . 4  |-  U. J  =  U. J
86, 7cvmcov 23809 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  P  e.  U. J )  ->  E. y  e.  J  ( P  e.  y  /\  ( S `  y
)  =/=  (/) ) )
91, 5, 8syl2anc 642 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  E. y  e.  J  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) )
10 inss2 3403 . . . . . . 7  |-  ( y  i^i  U )  C_  U
11 vex 2804 . . . . . . . . 9  |-  y  e. 
_V
1211inex1 4171 . . . . . . . 8  |-  ( y  i^i  U )  e. 
_V
1312elpw 3644 . . . . . . 7  |-  ( ( y  i^i  U )  e.  ~P U  <->  ( y  i^i  U )  C_  U
)
1410, 13mpbir 200 . . . . . 6  |-  ( y  i^i  U )  e. 
~P U
1514a1i 10 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  ( y  i^i  U )  e.  ~P U )
16 simprrl 740 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  P  e.  y )
172adantr 451 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  P  e.  U )
18 elin 3371 . . . . . 6  |-  ( P  e.  ( y  i^i 
U )  <->  ( P  e.  y  /\  P  e.  U ) )
1916, 17, 18sylanbrc 645 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  P  e.  ( y  i^i  U
) )
20 simprrr 741 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  ( S `  y )  =/=  (/) )
211adantr 451 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  F  e.  ( C CovMap  J ) )
22 cvmtop2 23807 . . . . . . . . 9  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
2321, 22syl 15 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  J  e.  Top )
24 simprl 732 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  y  e.  J )
253adantr 451 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  U  e.  J )
26 inopn 16661 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  e.  J  /\  U  e.  J )  ->  ( y  i^i  U
)  e.  J )
2723, 24, 25, 26syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  ( y  i^i  U )  e.  J
)
28 inss1 3402 . . . . . . . 8  |-  ( y  i^i  U )  C_  y
2928a1i 10 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  ( y  i^i  U )  C_  y
)
306cvmsss2 23820 . . . . . . 7  |-  ( ( F  e.  ( C CovMap  J )  /\  (
y  i^i  U )  e.  J  /\  (
y  i^i  U )  C_  y )  ->  (
( S `  y
)  =/=  (/)  ->  ( S `  ( y  i^i  U ) )  =/=  (/) ) )
3121, 27, 29, 30syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  ( ( S `  y )  =/=  (/)  ->  ( S `  ( y  i^i  U
) )  =/=  (/) ) )
3220, 31mpd 14 . . . . 5  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  ( S `  ( y  i^i  U
) )  =/=  (/) )
33 eleq2 2357 . . . . . . 7  |-  ( x  =  ( y  i^i 
U )  ->  ( P  e.  x  <->  P  e.  ( y  i^i  U
) ) )
34 fveq2 5541 . . . . . . . 8  |-  ( x  =  ( y  i^i 
U )  ->  ( S `  x )  =  ( S `  ( y  i^i  U
) ) )
3534neeq1d 2472 . . . . . . 7  |-  ( x  =  ( y  i^i 
U )  ->  (
( S `  x
)  =/=  (/)  <->  ( S `  ( y  i^i  U
) )  =/=  (/) ) )
3633, 35anbi12d 691 . . . . . 6  |-  ( x  =  ( y  i^i 
U )  ->  (
( P  e.  x  /\  ( S `  x
)  =/=  (/) )  <->  ( P  e.  ( y  i^i  U
)  /\  ( S `  ( y  i^i  U
) )  =/=  (/) ) ) )
3736rspcev 2897 . . . . 5  |-  ( ( ( y  i^i  U
)  e.  ~P U  /\  ( P  e.  ( y  i^i  U )  /\  ( S `  ( y  i^i  U
) )  =/=  (/) ) )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `
 x )  =/=  (/) ) )
3815, 19, 32, 37syl12anc 1180 . . . 4  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  ( y  e.  J  /\  ( P  e.  y  /\  ( S `  y )  =/=  (/) ) ) )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `  x )  =/=  (/) ) )
3938expr 598 . . 3  |-  ( ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  /\  y  e.  J
)  ->  ( ( P  e.  y  /\  ( S `  y )  =/=  (/) )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `  x )  =/=  (/) ) ) )
4039rexlimdva 2680 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  ( E. y  e.  J  ( P  e.  y  /\  ( S `  y
)  =/=  (/) )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `
 x )  =/=  (/) ) ) )
419, 40mpd 14 1  |-  ( ( F  e.  ( C CovMap  J )  /\  U  e.  J  /\  P  e.  U )  ->  E. x  e.  ~P  U ( P  e.  x  /\  ( S `  x )  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   U.cuni 3843    e. cmpt 4093   `'ccnv 4704    |` cres 4707   "cima 4708   ` cfv 5271  (class class class)co 5874   ↾t crest 13341   Topctop 16647    Homeo chmeo 17460   CovMap ccvm 23801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973  df-hmeo 17462  df-cvm 23802
  Copyright terms: Public domain W3C validator