Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfo Structured version   Unicode version

Theorem cvmfo 24987
Description: A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmlift.1  |-  B  = 
U. C
cvmfo.2  |-  X  = 
U. J
Assertion
Ref Expression
cvmfo  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )

Proof of Theorem cvmfo
Dummy variables  a 
b  c  d  k  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . . 3  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) } )  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) } )
21cvmscbv 24945 . 2  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) } )  =  ( a  e.  J  |->  { b  e.  ( ~P C  \  { (/) } )  |  ( U. b  =  ( `' F " a )  /\  A. c  e.  b  ( A. d  e.  ( b  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  a ) ) ) ) } )
3 cvmlift.1 . 2  |-  B  = 
U. C
4 cvmfo.2 . 2  |-  X  = 
U. J
52, 3, 4cvmfolem 24966 1  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   {crab 2709    \ cdif 3317    i^i cin 3319   (/)c0 3628   ~Pcpw 3799   {csn 3814   U.cuni 4015    e. cmpt 4266   `'ccnv 4877    |` cres 4880   "cima 4881   -onto->wfo 5452  (class class class)co 6081   ↾t crest 13648    Homeo chmeo 17785   CovMap ccvm 24942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-fin 7113  df-fi 7416  df-rest 13650  df-topgen 13667  df-top 16963  df-bases 16965  df-topon 16966  df-cn 17291  df-hmeo 17787  df-cvm 24943
  Copyright terms: Public domain W3C validator