Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfolem Structured version   Unicode version

Theorem cvmfolem 24968
Description: Lemma for cvmfo 24989. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmseu.1  |-  B  = 
U. C
cvmfolem.2  |-  X  = 
U. J
Assertion
Ref Expression
cvmfolem  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    v, B
Allowed substitution hints:    B( u, k, s)    S( v, u, k, s)    X( v, u, k, s)

Proof of Theorem cvmfolem
Dummy variables  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmcn 24951 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
2 cvmseu.1 . . . 4  |-  B  = 
U. C
3 cvmfolem.2 . . . 4  |-  X  = 
U. J
42, 3cnf 17312 . . 3  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> X )
51, 4syl 16 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  F : B
--> X )
6 cvmcov.1 . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
76, 3cvmcov 24952 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  x  e.  X )  ->  E. z  e.  J  ( x  e.  z  /\  ( S `  z )  =/=  (/) ) )
87ex 425 . . . 4  |-  ( F  e.  ( C CovMap  J
)  ->  ( x  e.  X  ->  E. z  e.  J  ( x  e.  z  /\  ( S `  z )  =/=  (/) ) ) )
9 n0 3639 . . . . . . 7  |-  ( ( S `  z )  =/=  (/)  <->  E. w  w  e.  ( S `  z
) )
106cvmsn0 24957 . . . . . . . . . . . 12  |-  ( w  e.  ( S `  z )  ->  w  =/=  (/) )
1110ad2antll 711 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  w  =/=  (/) )
12 n0 3639 . . . . . . . . . . 11  |-  ( w  =/=  (/)  <->  E. t  t  e.  w )
1311, 12sylib 190 . . . . . . . . . 10  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  E. t 
t  e.  w )
14 simprlr 741 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  w  e.  ( S `  z ) )
156cvmsss 24956 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( S `  z )  ->  w  C_  C )
1614, 15syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  w  C_  C )
17 simprr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  e.  w )
1816, 17sseldd 3351 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  e.  C )
19 elssuni 4045 . . . . . . . . . . . . . . . 16  |-  ( t  e.  C  ->  t  C_ 
U. C )
2018, 19syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  C_  U. C )
2120, 2syl6sseqr 3397 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  C_  B )
22 simpll 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  F  e.  ( C CovMap  J ) )
236cvmsf1o 24961 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  ( C CovMap  J )  /\  w  e.  ( S `  z
)  /\  t  e.  w )  ->  ( F  |`  t ) : t -1-1-onto-> z )
2422, 14, 17, 23syl3anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( F  |`  t
) : t -1-1-onto-> z )
25 f1ocnv 5689 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  t ) : t -1-1-onto-> z  ->  `' ( F  |`  t ) : z -1-1-onto-> t )
26 f1of 5676 . . . . . . . . . . . . . . . 16  |-  ( `' ( F  |`  t
) : z -1-1-onto-> t  ->  `' ( F  |`  t ) : z --> t )
2724, 25, 263syl 19 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  `' ( F  |`  t ) : z --> t )
28 simprll 740 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  x  e.  z )
2927, 28ffvelrnd 5873 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( `' ( F  |`  t ) `  x
)  e.  t )
3021, 29sseldd 3351 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( `' ( F  |`  t ) `  x
)  e.  B )
31 f1ocnvfv2 6017 . . . . . . . . . . . . . . 15  |-  ( ( ( F  |`  t
) : t -1-1-onto-> z  /\  x  e.  z )  ->  ( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  x )
3224, 28, 31syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  x )
33 fvres 5747 . . . . . . . . . . . . . . 15  |-  ( ( `' ( F  |`  t ) `  x
)  e.  t  -> 
( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  ( F `  ( `' ( F  |`  t
) `  x )
) )
3429, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  ( F `  ( `' ( F  |`  t
) `  x )
) )
3532, 34eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  x  =  ( F `  ( `' ( F  |`  t ) `  x
) ) )
36 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( y  =  ( `' ( F  |`  t ) `  x )  ->  ( F `  y )  =  ( F `  ( `' ( F  |`  t ) `  x
) ) )
3736eqeq2d 2449 . . . . . . . . . . . . . 14  |-  ( y  =  ( `' ( F  |`  t ) `  x )  ->  (
x  =  ( F `
 y )  <->  x  =  ( F `  ( `' ( F  |`  t
) `  x )
) ) )
3837rspcev 3054 . . . . . . . . . . . . 13  |-  ( ( ( `' ( F  |`  t ) `  x
)  e.  B  /\  x  =  ( F `  ( `' ( F  |`  t ) `  x
) ) )  ->  E. y  e.  B  x  =  ( F `  y ) )
3930, 35, 38syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  E. y  e.  B  x  =  ( F `  y ) )
4039expr 600 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  (
t  e.  w  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4140exlimdv 1647 . . . . . . . . . 10  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  ( E. t  t  e.  w  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4213, 41mpd 15 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  E. y  e.  B  x  =  ( F `  y ) )
4342expr 600 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  x  e.  z
)  ->  ( w  e.  ( S `  z
)  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4443exlimdv 1647 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  x  e.  z
)  ->  ( E. w  w  e.  ( S `  z )  ->  E. y  e.  B  x  =  ( F `  y ) ) )
459, 44syl5bi 210 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  x  e.  z
)  ->  ( ( S `  z )  =/=  (/)  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4645expimpd 588 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  ->  (
( x  e.  z  /\  ( S `  z )  =/=  (/) )  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4746rexlimdva 2832 . . . 4  |-  ( F  e.  ( C CovMap  J
)  ->  ( E. z  e.  J  (
x  e.  z  /\  ( S `  z )  =/=  (/) )  ->  E. y  e.  B  x  =  ( F `  y ) ) )
488, 47syld 43 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  ( x  e.  X  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4948ralrimiv 2790 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  A. x  e.  X  E. y  e.  B  x  =  ( F `  y ) )
50 dffo3 5886 . 2  |-  ( F : B -onto-> X  <->  ( F : B --> X  /\  A. x  e.  X  E. y  e.  B  x  =  ( F `  y ) ) )
515, 49, 50sylanbrc 647 1  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711    \ cdif 3319    i^i cin 3321    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816   U.cuni 4017    e. cmpt 4268   `'ccnv 4879    |` cres 4882   "cima 4883   -->wf 5452   -onto->wfo 5454   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083   ↾t crest 13650    Cn ccn 17290    Homeo chmeo 17787   CovMap ccvm 24944
This theorem is referenced by:  cvmfo  24989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-fin 7115  df-fi 7418  df-rest 13652  df-topgen 13669  df-top 16965  df-bases 16967  df-topon 16968  df-cn 17293  df-hmeo 17789  df-cvm 24945
  Copyright terms: Public domain W3C validator