Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Unicode version

Theorem cvmlift2lem1 23848
Description: Lemma for cvmlift2 23862. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  (
( 0 [,] 1
)  X.  { t } )  C_  M
) )
Distinct variable groups:    u, t, x, y    u, M, y
Allowed substitution hints:    M( x, t)

Proof of Theorem cvmlift2lem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bi1 178 . . . . . 6  |-  ( ( ( u  X.  {
x } )  C_  M 
<->  ( u  X.  {
t } )  C_  M )  ->  (
( u  X.  {
x } )  C_  M  ->  ( u  X.  { t } ) 
C_  M ) )
2 iitop 18400 . . . . . . . . . . 11  |-  II  e.  Top
3 iiuni 18401 . . . . . . . . . . . 12  |-  ( 0 [,] 1 )  = 
U. II
43neii1 16859 . . . . . . . . . . 11  |-  ( ( II  e.  Top  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  u  C_  (
0 [,] 1 ) )
52, 4mpan 651 . . . . . . . . . 10  |-  ( u  e.  ( ( nei `  II ) `  {
y } )  ->  u  C_  ( 0 [,] 1 ) )
65adantl 452 . . . . . . . . 9  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  u  C_  ( 0 [,] 1 ) )
7 xpss1 4811 . . . . . . . . 9  |-  ( u 
C_  ( 0 [,] 1 )  ->  (
u  X.  { x } )  C_  (
( 0 [,] 1
)  X.  { x } ) )
86, 7syl 15 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( u  X.  {
x } )  C_  ( ( 0 [,] 1 )  X.  {
x } ) )
9 simpl 443 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( 0 [,] 1 )  X.  {
x } )  C_  M )
108, 9sstrd 3202 . . . . . . 7  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( u  X.  {
x } )  C_  M )
11 ssnei 16863 . . . . . . . . . . . 12  |-  ( ( II  e.  Top  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  { y }  C_  u )
122, 11mpan 651 . . . . . . . . . . 11  |-  ( u  e.  ( ( nei `  II ) `  {
y } )  ->  { y }  C_  u )
1312adantl 452 . . . . . . . . . 10  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  { y }  C_  u )
14 vex 2804 . . . . . . . . . . 11  |-  y  e. 
_V
1514snss 3761 . . . . . . . . . 10  |-  ( y  e.  u  <->  { y }  C_  u )
1613, 15sylibr 203 . . . . . . . . 9  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
y  e.  u )
17 vex 2804 . . . . . . . . . 10  |-  t  e. 
_V
1817snid 3680 . . . . . . . . 9  |-  t  e. 
{ t }
19 opelxpi 4737 . . . . . . . . 9  |-  ( ( y  e.  u  /\  t  e.  { t } )  ->  <. y ,  t >.  e.  ( u  X.  { t } ) )
2016, 18, 19sylancl 643 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  <. y ,  t >.  e.  ( u  X.  {
t } ) )
21 ssel 3187 . . . . . . . 8  |-  ( ( u  X.  { t } )  C_  M  ->  ( <. y ,  t
>.  e.  ( u  X.  { t } )  ->  <. y ,  t
>.  e.  M ) )
2220, 21syl5com 26 . . . . . . 7  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( u  X.  { t } ) 
C_  M  ->  <. y ,  t >.  e.  M
) )
2310, 22embantd 50 . . . . . 6  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( ( u  X.  { x }
)  C_  M  ->  ( u  X.  { t } )  C_  M
)  ->  <. y ,  t >.  e.  M
) )
241, 23syl5 28 . . . . 5  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  ->  <. y ,  t >.  e.  M ) )
2524rexlimdva 2680 . . . 4  |-  ( ( ( 0 [,] 1
)  X.  { x } )  C_  M  ->  ( E. u  e.  ( ( nei `  II ) `  { y } ) ( ( u  X.  { x } )  C_  M  <->  ( u  X.  { t } )  C_  M
)  ->  <. y ,  t >.  e.  M
) )
2625ralimdv 2635 . . 3  |-  ( ( ( 0 [,] 1
)  X.  { x } )  C_  M  ->  ( A. y  e.  ( 0 [,] 1
) E. u  e.  ( ( nei `  II ) `  { y } ) ( ( u  X.  { x } )  C_  M  <->  ( u  X.  { t } )  C_  M
)  ->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M ) )
2726com12 27 . 2  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M ) )
28 dfss3 3183 . . 3  |-  ( ( ( 0 [,] 1
)  X.  { t } )  C_  M  <->  A. z  e.  ( ( 0 [,] 1 )  X.  { t } ) z  e.  M
)
29 eleq1 2356 . . . 4  |-  ( z  =  <. y ,  u >.  ->  ( z  e.  M  <->  <. y ,  u >.  e.  M ) )
3029ralxp 4843 . . 3  |-  ( A. z  e.  ( (
0 [,] 1 )  X.  { t } ) z  e.  M  <->  A. y  e.  ( 0 [,] 1 ) A. u  e.  { t } <. y ,  u >.  e.  M )
31 opeq2 3813 . . . . . 6  |-  ( u  =  t  ->  <. y ,  u >.  =  <. y ,  t >. )
3231eleq1d 2362 . . . . 5  |-  ( u  =  t  ->  ( <. y ,  u >.  e.  M  <->  <. y ,  t
>.  e.  M ) )
3317, 32ralsn 3687 . . . 4  |-  ( A. u  e.  { t } <. y ,  u >.  e.  M  <->  <. y ,  t >.  e.  M
)
3433ralbii 2580 . . 3  |-  ( A. y  e.  ( 0 [,] 1 ) A. u  e.  { t } <. y ,  u >.  e.  M  <->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M )
3528, 30, 343bitri 262 . 2  |-  ( ( ( 0 [,] 1
)  X.  { t } )  C_  M  <->  A. y  e.  ( 0 [,] 1 ) <.
y ,  t >.  e.  M )
3627, 35syl6ibr 218 1  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  (
( 0 [,] 1
)  X.  { t } )  C_  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   {csn 3653   <.cop 3656    X. cxp 4703   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754   [,]cicc 10675   Topctop 16647   neicnei 16850   IIcii 18395
This theorem is referenced by:  cvmlift2lem12  23860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-nei 16851  df-ii 18397
  Copyright terms: Public domain W3C validator