Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Unicode version

Theorem cvmlift2lem1 23833
Description: Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  (
( 0 [,] 1
)  X.  { t } )  C_  M
) )
Distinct variable groups:    u, t, x, y    u, M, y
Allowed substitution hints:    M( x, t)

Proof of Theorem cvmlift2lem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bi1 178 . . . . . 6  |-  ( ( ( u  X.  {
x } )  C_  M 
<->  ( u  X.  {
t } )  C_  M )  ->  (
( u  X.  {
x } )  C_  M  ->  ( u  X.  { t } ) 
C_  M ) )
2 iitop 18384 . . . . . . . . . . 11  |-  II  e.  Top
3 iiuni 18385 . . . . . . . . . . . 12  |-  ( 0 [,] 1 )  = 
U. II
43neii1 16843 . . . . . . . . . . 11  |-  ( ( II  e.  Top  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  u  C_  (
0 [,] 1 ) )
52, 4mpan 651 . . . . . . . . . 10  |-  ( u  e.  ( ( nei `  II ) `  {
y } )  ->  u  C_  ( 0 [,] 1 ) )
65adantl 452 . . . . . . . . 9  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  u  C_  ( 0 [,] 1 ) )
7 xpss1 4795 . . . . . . . . 9  |-  ( u 
C_  ( 0 [,] 1 )  ->  (
u  X.  { x } )  C_  (
( 0 [,] 1
)  X.  { x } ) )
86, 7syl 15 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( u  X.  {
x } )  C_  ( ( 0 [,] 1 )  X.  {
x } ) )
9 simpl 443 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( 0 [,] 1 )  X.  {
x } )  C_  M )
108, 9sstrd 3189 . . . . . . 7  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( u  X.  {
x } )  C_  M )
11 ssnei 16847 . . . . . . . . . . . 12  |-  ( ( II  e.  Top  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  { y }  C_  u )
122, 11mpan 651 . . . . . . . . . . 11  |-  ( u  e.  ( ( nei `  II ) `  {
y } )  ->  { y }  C_  u )
1312adantl 452 . . . . . . . . . 10  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  { y }  C_  u )
14 vex 2791 . . . . . . . . . . 11  |-  y  e. 
_V
1514snss 3748 . . . . . . . . . 10  |-  ( y  e.  u  <->  { y }  C_  u )
1613, 15sylibr 203 . . . . . . . . 9  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
y  e.  u )
17 vex 2791 . . . . . . . . . 10  |-  t  e. 
_V
1817snid 3667 . . . . . . . . 9  |-  t  e. 
{ t }
19 opelxpi 4721 . . . . . . . . 9  |-  ( ( y  e.  u  /\  t  e.  { t } )  ->  <. y ,  t >.  e.  ( u  X.  { t } ) )
2016, 18, 19sylancl 643 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  <. y ,  t >.  e.  ( u  X.  {
t } ) )
21 ssel 3174 . . . . . . . 8  |-  ( ( u  X.  { t } )  C_  M  ->  ( <. y ,  t
>.  e.  ( u  X.  { t } )  ->  <. y ,  t
>.  e.  M ) )
2220, 21syl5com 26 . . . . . . 7  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( u  X.  { t } ) 
C_  M  ->  <. y ,  t >.  e.  M
) )
2310, 22embantd 50 . . . . . 6  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( ( u  X.  { x }
)  C_  M  ->  ( u  X.  { t } )  C_  M
)  ->  <. y ,  t >.  e.  M
) )
241, 23syl5 28 . . . . 5  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  ->  <. y ,  t >.  e.  M ) )
2524rexlimdva 2667 . . . 4  |-  ( ( ( 0 [,] 1
)  X.  { x } )  C_  M  ->  ( E. u  e.  ( ( nei `  II ) `  { y } ) ( ( u  X.  { x } )  C_  M  <->  ( u  X.  { t } )  C_  M
)  ->  <. y ,  t >.  e.  M
) )
2625ralimdv 2622 . . 3  |-  ( ( ( 0 [,] 1
)  X.  { x } )  C_  M  ->  ( A. y  e.  ( 0 [,] 1
) E. u  e.  ( ( nei `  II ) `  { y } ) ( ( u  X.  { x } )  C_  M  <->  ( u  X.  { t } )  C_  M
)  ->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M ) )
2726com12 27 . 2  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M ) )
28 dfss3 3170 . . 3  |-  ( ( ( 0 [,] 1
)  X.  { t } )  C_  M  <->  A. z  e.  ( ( 0 [,] 1 )  X.  { t } ) z  e.  M
)
29 eleq1 2343 . . . 4  |-  ( z  =  <. y ,  u >.  ->  ( z  e.  M  <->  <. y ,  u >.  e.  M ) )
3029ralxp 4827 . . 3  |-  ( A. z  e.  ( (
0 [,] 1 )  X.  { t } ) z  e.  M  <->  A. y  e.  ( 0 [,] 1 ) A. u  e.  { t } <. y ,  u >.  e.  M )
31 opeq2 3797 . . . . . 6  |-  ( u  =  t  ->  <. y ,  u >.  =  <. y ,  t >. )
3231eleq1d 2349 . . . . 5  |-  ( u  =  t  ->  ( <. y ,  u >.  e.  M  <->  <. y ,  t
>.  e.  M ) )
3317, 32ralsn 3674 . . . 4  |-  ( A. u  e.  { t } <. y ,  u >.  e.  M  <->  <. y ,  t >.  e.  M
)
3433ralbii 2567 . . 3  |-  ( A. y  e.  ( 0 [,] 1 ) A. u  e.  { t } <. y ,  u >.  e.  M  <->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M )
3528, 30, 343bitri 262 . 2  |-  ( ( ( 0 [,] 1
)  X.  { t } )  C_  M  <->  A. y  e.  ( 0 [,] 1 ) <.
y ,  t >.  e.  M )
3627, 35syl6ibr 218 1  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  (
( 0 [,] 1
)  X.  { t } )  C_  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   {csn 3640   <.cop 3643    X. cxp 4687   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738   [,]cicc 10659   Topctop 16631   neicnei 16834   IIcii 18379
This theorem is referenced by:  cvmlift2lem12  23845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-nei 16835  df-ii 18381
  Copyright terms: Public domain W3C validator