Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Unicode version

Theorem cvmlift2lem13 25033
Description: Lemma for cvmlift2 25034. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem13  |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
Distinct variable groups:    f, g, x, y, z, F    ph, f,
g, x, y, z   
f, J, g, x, y, z    f, G, g, x, y, z   
f, H, x, y, z    C, f, g, x, y, z    P, f, g, x, y, z   
x, B, y, z   
f, K, g, x, y, z
Allowed substitution hints:    B( f, g)    H( g)

Proof of Theorem cvmlift2lem13
Dummy variables  b 
c  d  u  v  a  r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4  |-  B  = 
U. C
2 cvmlift2.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . 4  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . 4  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . 4  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 cvmlift2.k . . . 4  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
8 fveq2 5757 . . . . . 6  |-  ( a  =  z  ->  (
( ( II  tX  II )  CnP  C ) `
 a )  =  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
98eleq2d 2509 . . . . 5  |-  ( a  =  z  ->  ( K  e.  ( (
( II  tX  II )  CnP  C ) `  a )  <->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) ) )
109cbvrabv 2961 . . . 4  |-  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  =  {
z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  z ) }
11 sneq 3849 . . . . . . 7  |-  ( z  =  b  ->  { z }  =  { b } )
1211xpeq2d 4931 . . . . . 6  |-  ( z  =  b  ->  (
( 0 [,] 1
)  X.  { z } )  =  ( ( 0 [,] 1
)  X.  { b } ) )
1312sseq1d 3361 . . . . 5  |-  ( z  =  b  ->  (
( ( 0 [,] 1 )  X.  {
z } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( (
0 [,] 1 )  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
1413cbvrabv 2961 . . . 4  |-  { z  e.  ( 0 [,] 1 )  |  ( ( 0 [,] 1
)  X.  { z } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } }  =  { b  e.  ( 0 [,] 1 )  |  ( ( 0 [,] 1 )  X. 
{ b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } }
15 simpr 449 . . . . . . 7  |-  ( ( c  =  r  /\  d  =  t )  ->  d  =  t )
1615eleq1d 2508 . . . . . 6  |-  ( ( c  =  r  /\  d  =  t )  ->  ( d  e.  ( 0 [,] 1 )  <-> 
t  e.  ( 0 [,] 1 ) ) )
17 xpeq1 4921 . . . . . . . . . 10  |-  ( v  =  u  ->  (
v  X.  { b } )  =  ( u  X.  { b } ) )
1817sseq1d 3361 . . . . . . . . 9  |-  ( v  =  u  ->  (
( v  X.  {
b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( u  X.  { b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
19 xpeq1 4921 . . . . . . . . . 10  |-  ( v  =  u  ->  (
v  X.  { d } )  =  ( u  X.  { d } ) )
2019sseq1d 3361 . . . . . . . . 9  |-  ( v  =  u  ->  (
( v  X.  {
d } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
2118, 20bibi12d 314 . . . . . . . 8  |-  ( v  =  u  ->  (
( ( v  X. 
{ b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  ( (
u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
2221cbvrexv 2939 . . . . . . 7  |-  ( E. v  e.  ( ( nei `  II ) `
 { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { c } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
23 simpl 445 . . . . . . . . . 10  |-  ( ( c  =  r  /\  d  =  t )  ->  c  =  r )
2423sneqd 3851 . . . . . . . . 9  |-  ( ( c  =  r  /\  d  =  t )  ->  { c }  =  { r } )
2524fveq2d 5761 . . . . . . . 8  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( nei `  II ) `  { c } )  =  ( ( nei `  II ) `  { r } ) )
2615sneqd 3851 . . . . . . . . . . 11  |-  ( ( c  =  r  /\  d  =  t )  ->  { d }  =  { t } )
2726xpeq2d 4931 . . . . . . . . . 10  |-  ( ( c  =  r  /\  d  =  t )  ->  ( u  X.  {
d } )  =  ( u  X.  {
t } ) )
2827sseq1d 3361 . . . . . . . . 9  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
2928bibi2d 311 . . . . . . . 8  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  ( (
u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3025, 29rexeqbidv 2923 . . . . . . 7  |-  ( ( c  =  r  /\  d  =  t )  ->  ( E. u  e.  ( ( nei `  II ) `  { c } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3122, 30syl5bb 250 . . . . . 6  |-  ( ( c  =  r  /\  d  =  t )  ->  ( E. v  e.  ( ( nei `  II ) `  { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3216, 31anbi12d 693 . . . . 5  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( d  e.  ( 0 [,] 1
)  /\  E. v  e.  ( ( nei `  II ) `  { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )  <-> 
( t  e.  ( 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) ) )
3332cbvopabv 4302 . . . 4  |-  { <. c ,  d >.  |  ( d  e.  ( 0 [,] 1 )  /\  E. v  e.  ( ( nei `  II ) `
 { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) }  =  { <. r ,  t >.  |  ( t  e.  ( 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `
 { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) }
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 25032 . . 3  |-  ( ph  ->  K  e.  ( ( II  tX  II )  Cn  C ) )
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 25027 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  G )
36 0elunit 11046 . . . . 5  |-  0  e.  ( 0 [,] 1
)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 25028 . . . . 5  |-  ( (
ph  /\  0  e.  ( 0 [,] 1
) )  ->  (
0 K 0 )  =  ( H ` 
0 ) )
3836, 37mpan2 654 . . . 4  |-  ( ph  ->  ( 0 K 0 )  =  ( H `
 0 ) )
391, 2, 3, 4, 5, 6cvmlift2lem2 25022 . . . . 5  |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( H `
 0 )  =  P ) )
4039simp3d 972 . . . 4  |-  ( ph  ->  ( H `  0
)  =  P )
4138, 40eqtrd 2474 . . 3  |-  ( ph  ->  ( 0 K 0 )  =  P )
42 coeq2 5060 . . . . . 6  |-  ( g  =  K  ->  ( F  o.  g )  =  ( F  o.  K ) )
4342eqeq1d 2450 . . . . 5  |-  ( g  =  K  ->  (
( F  o.  g
)  =  G  <->  ( F  o.  K )  =  G ) )
44 oveq 6116 . . . . . 6  |-  ( g  =  K  ->  (
0 g 0 )  =  ( 0 K 0 ) )
4544eqeq1d 2450 . . . . 5  |-  ( g  =  K  ->  (
( 0 g 0 )  =  P  <->  ( 0 K 0 )  =  P ) )
4643, 45anbi12d 693 . . . 4  |-  ( g  =  K  ->  (
( ( F  o.  g )  =  G  /\  ( 0 g 0 )  =  P )  <->  ( ( F  o.  K )  =  G  /\  ( 0 K 0 )  =  P ) ) )
4746rspcev 3058 . . 3  |-  ( ( K  e.  ( ( II  tX  II )  Cn  C )  /\  (
( F  o.  K
)  =  G  /\  ( 0 K 0 )  =  P ) )  ->  E. g  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  g )  =  G  /\  ( 0 g 0 )  =  P ) )
4834, 35, 41, 47syl12anc 1183 . 2  |-  ( ph  ->  E. g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
49 iitop 18941 . . . . 5  |-  II  e.  Top
50 iiuni 18942 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
5149, 49, 50, 50txunii 17656 . . . 4  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
52 iicon 18948 . . . . . 6  |-  II  e.  Con
53 txcon 17752 . . . . . 6  |-  ( ( II  e.  Con  /\  II  e.  Con )  -> 
( II  tX  II )  e.  Con )
5452, 52, 53mp2an 655 . . . . 5  |-  ( II 
tX  II )  e. 
Con
5554a1i 11 . . . 4  |-  ( ph  ->  ( II  tX  II )  e.  Con )
56 iinllycon 24972 . . . . . 6  |-  II  e. 𝑛Locally  Con
57 txcon 17752 . . . . . . 7  |-  ( ( x  e.  Con  /\  y  e.  Con )  ->  ( x  tX  y
)  e.  Con )
5857txnlly 17700 . . . . . 6  |-  ( ( II  e. 𝑛Locally  Con  /\  II  e. 𝑛Locally  Con )  ->  ( II  tX  II )  e. 𝑛Locally  Con )
5956, 56, 58mp2an 655 . . . . 5  |-  ( II 
tX  II )  e. 𝑛Locally  Con
6059a1i 11 . . . 4  |-  ( ph  ->  ( II  tX  II )  e. 𝑛Locally  Con )
61 opelxpi 4939 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
6236, 36, 61mp2an 655 . . . . 5  |-  <. 0 ,  0 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )
6362a1i 11 . . . 4  |-  ( ph  -> 
<. 0 ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
64 df-ov 6113 . . . . 5  |-  ( 0 G 0 )  =  ( G `  <. 0 ,  0 >. )
655, 64syl6eq 2490 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 <. 0 ,  0
>. ) )
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 25002 . . 3  |-  ( ph  ->  E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( g `  <. 0 ,  0 >. )  =  P ) )
67 df-ov 6113 . . . . . 6  |-  ( 0 g 0 )  =  ( g `  <. 0 ,  0 >. )
6867eqeq1i 2449 . . . . 5  |-  ( ( 0 g 0 )  =  P  <->  ( g `  <. 0 ,  0
>. )  =  P
)
6968anbi2i 677 . . . 4  |-  ( ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P )  <-> 
( ( F  o.  g )  =  G  /\  ( g `  <. 0 ,  0 >.
)  =  P ) )
7069rmobii 2905 . . 3  |-  ( E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  <->  E* g  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  g )  =  G  /\  ( g `
 <. 0 ,  0
>. )  =  P
) )
7166, 70sylibr 205 . 2  |-  ( ph  ->  E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
72 reu5 2927 . 2  |-  ( E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  <->  ( E. g  e.  ( (
II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  /\  E* g  e.  (
( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) ) )
7348, 71, 72sylanbrc 647 1  |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   E.wrex 2712   E!wreu 2713   E*wrmo 2714   {crab 2715    C_ wss 3306   {csn 3838   <.cop 3841   U.cuni 4039   {copab 4290    e. cmpt 4291    X. cxp 4905    o. ccom 4911   ` cfv 5483  (class class class)co 6110    e. cmpt2 6112   iota_crio 6571   0cc0 9021   1c1 9022   [,]cicc 10950   neicnei 17192    Cn ccn 17319    CnP ccnp 17320   Conccon 17505  𝑛Locally cnlly 17559    tX ctx 17623   IIcii 18936   CovMap ccvm 24973
This theorem is referenced by:  cvmlift2  25034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-er 6934  df-ec 6936  df-map 7049  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-fi 7445  df-sup 7475  df-oi 7508  df-card 7857  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-ioo 10951  df-ico 10953  df-icc 10954  df-fz 11075  df-fzo 11167  df-fl 11233  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-clim 12313  df-sum 12511  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-starv 13575  df-sca 13576  df-vsca 13577  df-tset 13579  df-ple 13580  df-ds 13582  df-unif 13583  df-hom 13584  df-cco 13585  df-rest 13681  df-topn 13682  df-topgen 13698  df-pt 13699  df-prds 13702  df-xrs 13757  df-0g 13758  df-gsum 13759  df-qtop 13764  df-imas 13765  df-xps 13767  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-submnd 14770  df-mulg 14846  df-cntz 15147  df-cmn 15445  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-cnfld 16735  df-top 16994  df-bases 16996  df-topon 16997  df-topsp 16998  df-cld 17114  df-ntr 17115  df-cls 17116  df-nei 17193  df-cn 17322  df-cnp 17323  df-cmp 17481  df-con 17506  df-lly 17560  df-nlly 17561  df-tx 17625  df-hmeo 17818  df-xms 18381  df-ms 18382  df-tms 18383  df-ii 18938  df-htpy 19026  df-phtpy 19027  df-phtpc 19048  df-pcon 24939  df-scon 24940  df-cvm 24974
  Copyright terms: Public domain W3C validator