Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem3 Unicode version

Theorem cvmlift2lem3 24240
Description: Lemma for cvmlift2 24251. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2lem3.1  |-  K  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) )
Assertion
Ref Expression
cvmlift2lem3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( K `  0 )  =  ( H `  X ) ) )
Distinct variable groups:    z, f, F    ph, f, z    f, J, z    f, G, z   
f, H, z    f, X, z    C, f, z    P, f, z    z, B
Allowed substitution hints:    B( f)    K( z, f)

Proof of Theorem cvmlift2lem3
StepHypRef Expression
1 cvmlift2.b . 2  |-  B  = 
U. C
2 cvmlift2lem3.1 . 2  |-  K  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) )
3 cvmlift2.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
43adantr 451 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  F  e.  ( C CovMap  J ) )
5 iitopon 18480 . . . 4  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
65a1i 10 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
7 simpr 447 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  X  e.  ( 0 [,] 1
) )
86, 6, 7cnmptc 17456 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  |->  X )  e.  ( II 
Cn  II ) )
96cnmptid 17455 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  |->  z )  e.  ( II 
Cn  II ) )
10 cvmlift2.g . . . 4  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
1110adantr 451 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  G  e.  ( ( II  tX  II )  Cn  J
) )
126, 8, 9, 11cnmpt12f 17460 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  e.  ( II 
Cn  J ) )
13 cvmlift2.p . . . . . 6  |-  ( ph  ->  P  e.  B )
14 cvmlift2.i . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
15 cvmlift2.h . . . . . 6  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
161, 3, 10, 13, 14, 15cvmlift2lem2 24239 . . . . 5  |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( H `
 0 )  =  P ) )
1716simp1d 967 . . . 4  |-  ( ph  ->  H  e.  ( II 
Cn  C ) )
18 iiuni 18482 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
1918, 1cnf 17076 . . . 4  |-  ( H  e.  ( II  Cn  C )  ->  H : ( 0 [,] 1 ) --> B )
2017, 19syl 15 . . 3  |-  ( ph  ->  H : ( 0 [,] 1 ) --> B )
21 ffvelrn 5743 . . 3  |-  ( ( H : ( 0 [,] 1 ) --> B  /\  X  e.  ( 0 [,] 1 ) )  ->  ( H `  X )  e.  B
)
2220, 21sylan 457 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( H `  X )  e.  B )
23 0elunit 10843 . . . 4  |-  0  e.  ( 0 [,] 1
)
24 oveq2 5950 . . . . 5  |-  ( z  =  0  ->  ( X G z )  =  ( X G 0 ) )
25 eqid 2358 . . . . 5  |-  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )
26 ovex 5967 . . . . 5  |-  ( X G 0 )  e. 
_V
2724, 25, 26fvmpt 5682 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( X G z ) ) `  0
)  =  ( X G 0 ) )
2823, 27mp1i 11 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( X G z ) ) `  0
)  =  ( X G 0 ) )
2916simp2d 968 . . . . 5  |-  ( ph  ->  ( F  o.  H
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) )
3029fveq1d 5607 . . . 4  |-  ( ph  ->  ( ( F  o.  H ) `  X
)  =  ( ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) `  X ) )
31 oveq1 5949 . . . . 5  |-  ( z  =  X  ->  (
z G 0 )  =  ( X G 0 ) )
32 eqid 2358 . . . . 5  |-  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( z G 0 ) )
3331, 32, 26fvmpt 5682 . . . 4  |-  ( X  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( z G 0 ) ) `  X
)  =  ( X G 0 ) )
3430, 33sylan9eq 2410 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F  o.  H
) `  X )  =  ( X G 0 ) )
35 fvco3 5676 . . . 4  |-  ( ( H : ( 0 [,] 1 ) --> B  /\  X  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  H ) `  X )  =  ( F `  ( H `
 X ) ) )
3620, 35sylan 457 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F  o.  H
) `  X )  =  ( F `  ( H `  X ) ) )
3728, 34, 363eqtr2rd 2397 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( F `  ( H `  X ) )  =  ( ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) ) ` 
0 ) )
381, 2, 4, 12, 22, 37cvmliftiota 24236 1  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( K `  0 )  =  ( H `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   U.cuni 3906    e. cmpt 4156    o. ccom 4772   -->wf 5330   ` cfv 5334  (class class class)co 5942   iota_crio 6381   0cc0 8824   1c1 8825   [,]cicc 10748  TopOnctopon 16732    Cn ccn 17054    tX ctx 17355   IIcii 18476   CovMap ccvm 24190
This theorem is referenced by:  cvmlift2lem5  24242  cvmlift2lem6  24243  cvmlift2lem7  24244  cvmlift2lem8  24245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902  ax-addf 8903  ax-mulf 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-of 6162  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-2o 6564  df-oadd 6567  df-er 6744  df-ec 6746  df-map 6859  df-ixp 6903  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-fi 7252  df-sup 7281  df-oi 7312  df-card 7659  df-cda 7881  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-uz 10320  df-q 10406  df-rp 10444  df-xneg 10541  df-xadd 10542  df-xmul 10543  df-ioo 10749  df-ico 10751  df-icc 10752  df-fz 10872  df-fzo 10960  df-fl 11014  df-seq 11136  df-exp 11195  df-hash 11428  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-clim 12052  df-sum 12250  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-plusg 13312  df-mulr 13313  df-starv 13314  df-sca 13315  df-vsca 13316  df-tset 13318  df-ple 13319  df-ds 13321  df-unif 13322  df-hom 13323  df-cco 13324  df-rest 13420  df-topn 13421  df-topgen 13437  df-pt 13438  df-prds 13441  df-xrs 13496  df-0g 13497  df-gsum 13498  df-qtop 13503  df-imas 13504  df-xps 13506  df-mre 13581  df-mrc 13582  df-acs 13584  df-mnd 14460  df-submnd 14509  df-mulg 14585  df-cntz 14886  df-cmn 15184  df-xmet 16469  df-met 16470  df-bl 16471  df-mopn 16472  df-cnfld 16477  df-top 16736  df-bases 16738  df-topon 16739  df-topsp 16740  df-cld 16856  df-ntr 16857  df-cls 16858  df-nei 16935  df-cn 17057  df-cnp 17058  df-cmp 17214  df-con 17238  df-lly 17292  df-nlly 17293  df-tx 17357  df-hmeo 17546  df-xms 17981  df-ms 17982  df-tms 17983  df-ii 18478  df-htpy 18566  df-phtpy 18567  df-phtpc 18588  df-pcon 24156  df-scon 24157  df-cvm 24191
  Copyright terms: Public domain W3C validator