Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem3 Structured version   Unicode version

Theorem cvmlift2lem3 24997
Description: Lemma for cvmlift2 25008. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2lem3.1  |-  K  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) )
Assertion
Ref Expression
cvmlift2lem3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( K `  0 )  =  ( H `  X ) ) )
Distinct variable groups:    z, f, F    ph, f, z    f, J, z    f, G, z   
f, H, z    f, X, z    C, f, z    P, f, z    z, B
Allowed substitution hints:    B( f)    K( z, f)

Proof of Theorem cvmlift2lem3
StepHypRef Expression
1 cvmlift2.b . 2  |-  B  = 
U. C
2 cvmlift2lem3.1 . 2  |-  K  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) )
3 cvmlift2.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
43adantr 453 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  F  e.  ( C CovMap  J ) )
5 iitopon 18914 . . . 4  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
65a1i 11 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
7 simpr 449 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  X  e.  ( 0 [,] 1
) )
86, 6, 7cnmptc 17699 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  |->  X )  e.  ( II 
Cn  II ) )
96cnmptid 17698 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  |->  z )  e.  ( II 
Cn  II ) )
10 cvmlift2.g . . . 4  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
1110adantr 453 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  G  e.  ( ( II  tX  II )  Cn  J
) )
126, 8, 9, 11cnmpt12f 17703 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  e.  ( II 
Cn  J ) )
13 cvmlift2.p . . . . . 6  |-  ( ph  ->  P  e.  B )
14 cvmlift2.i . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
15 cvmlift2.h . . . . . 6  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
161, 3, 10, 13, 14, 15cvmlift2lem2 24996 . . . . 5  |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( H `
 0 )  =  P ) )
1716simp1d 970 . . . 4  |-  ( ph  ->  H  e.  ( II 
Cn  C ) )
18 iiuni 18916 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
1918, 1cnf 17315 . . . 4  |-  ( H  e.  ( II  Cn  C )  ->  H : ( 0 [,] 1 ) --> B )
2017, 19syl 16 . . 3  |-  ( ph  ->  H : ( 0 [,] 1 ) --> B )
2120ffvelrnda 5873 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( H `  X )  e.  B )
22 0elunit 11020 . . . 4  |-  0  e.  ( 0 [,] 1
)
23 oveq2 6092 . . . . 5  |-  ( z  =  0  ->  ( X G z )  =  ( X G 0 ) )
24 eqid 2438 . . . . 5  |-  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )
25 ovex 6109 . . . . 5  |-  ( X G 0 )  e. 
_V
2623, 24, 25fvmpt 5809 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( X G z ) ) `  0
)  =  ( X G 0 ) )
2722, 26mp1i 12 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( X G z ) ) `  0
)  =  ( X G 0 ) )
2816simp2d 971 . . . . 5  |-  ( ph  ->  ( F  o.  H
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) )
2928fveq1d 5733 . . . 4  |-  ( ph  ->  ( ( F  o.  H ) `  X
)  =  ( ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) `  X ) )
30 oveq1 6091 . . . . 5  |-  ( z  =  X  ->  (
z G 0 )  =  ( X G 0 ) )
31 eqid 2438 . . . . 5  |-  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( z G 0 ) )
3230, 31, 25fvmpt 5809 . . . 4  |-  ( X  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( z G 0 ) ) `  X
)  =  ( X G 0 ) )
3329, 32sylan9eq 2490 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F  o.  H
) `  X )  =  ( X G 0 ) )
34 fvco3 5803 . . . 4  |-  ( ( H : ( 0 [,] 1 ) --> B  /\  X  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  H ) `  X )  =  ( F `  ( H `
 X ) ) )
3520, 34sylan 459 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F  o.  H
) `  X )  =  ( F `  ( H `  X ) ) )
3627, 33, 353eqtr2rd 2477 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( F `  ( H `  X ) )  =  ( ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) ) ` 
0 ) )
371, 2, 4, 12, 21, 36cvmliftiota 24993 1  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( K `  0 )  =  ( H `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   U.cuni 4017    e. cmpt 4269    o. ccom 4885   -->wf 5453   ` cfv 5457  (class class class)co 6084   iota_crio 6545   0cc0 8995   1c1 8996   [,]cicc 10924  TopOnctopon 16964    Cn ccn 17293    tX ctx 17597   IIcii 18910   CovMap ccvm 24947
This theorem is referenced by:  cvmlift2lem5  24999  cvmlift2lem6  25000  cvmlift2lem7  25001  cvmlift2lem8  25002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-ec 6910  df-map 7023  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-cn 17296  df-cnp 17297  df-cmp 17455  df-con 17480  df-lly 17534  df-nlly 17535  df-tx 17599  df-hmeo 17792  df-xms 18355  df-ms 18356  df-tms 18357  df-ii 18912  df-htpy 19000  df-phtpy 19001  df-phtpc 19022  df-pcon 24913  df-scon 24914  df-cvm 24948
  Copyright terms: Public domain W3C validator