Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem6 Structured version   Unicode version

Theorem cvmlift2lem6 24995
Description: Lemma for cvmlift2 25003. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
Distinct variable groups:    x, f,
y, z, F    ph, f, x, y, z    f, J, x, y, z    f, G, x, y, z    f, H, x, y, z    f, X, x, y, z    C, f, x, y, z    P, f, x, y, z    x, B, y, z    f, K, x, y, z
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2lem6
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . 8  |-  B  = 
U. C
2 cvmlift2.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . . . . . 8  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . . . . . 8  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 cvmlift2.k . . . . . . . 8  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 24994 . . . . . . 7  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
98adantr 452 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
10 ffn 5591 . . . . . 6  |-  ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B  ->  K  Fn  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
119, 10syl 16 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  K  Fn  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
12 fnov 6178 . . . . 5  |-  ( K  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  <->  K  =  ( u  e.  (
0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) ) )
1311, 12sylib 189 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  K  =  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) ) )
1413reseq1d 5145 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  =  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u K v ) )  |`  ( { X }  X.  ( 0 [,] 1
) ) ) )
15 simpr 448 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  X  e.  ( 0 [,] 1
) )
1615snssd 3943 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  { X }  C_  ( 0 [,] 1 ) )
17 ssid 3367 . . . . 5  |-  ( 0 [,] 1 )  C_  ( 0 [,] 1
)
18 resmpt2 6168 . . . . 5  |-  ( ( { X }  C_  ( 0 [,] 1
)  /\  ( 0 [,] 1 )  C_  ( 0 [,] 1
) )  ->  (
( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) )  |`  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) ) )
1916, 17, 18sylancl 644 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) )  |`  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) ) )
20 elsni 3838 . . . . . . . 8  |-  ( u  e.  { X }  ->  u  =  X )
21203ad2ant2 979 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  u  =  X )
2221oveq1d 6096 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  ( u K v )  =  ( X K v ) )
23 simp1r 982 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  X  e.  ( 0 [,] 1 ) )
24 simp3 959 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  v  e.  ( 0 [,] 1 ) )
251, 2, 3, 4, 5, 6, 7cvmlift2lem4 24993 . . . . . . 7  |-  ( ( X  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  ->  ( X K v )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )
2623, 24, 25syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  ( X K v )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )
2722, 26eqtrd 2468 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  ( u K v )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )
2827mpt2eq3dva 6138 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) ) )
2919, 28eqtrd 2468 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) )  |`  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) ) )
3014, 29eqtrd 2468 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  =  ( u  e. 
{ X } , 
v  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) ) )
31 eqid 2436 . . . 4  |-  ( IIt  { X } )  =  ( IIt 
{ X } )
32 iitopon 18909 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3332a1i 11 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
34 eqid 2436 . . . 4  |-  ( IIt  ( 0 [,] 1 ) )  =  ( IIt  ( 0 [,] 1 ) )
3517a1i 11 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
0 [,] 1 ) 
C_  ( 0 [,] 1 ) )
3633, 33cnmpt2nd 17701 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  v )  e.  ( ( II  tX  II )  Cn  II ) )
37 eqid 2436 . . . . . . 7  |-  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) )  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) )
381, 2, 3, 4, 5, 6, 37cvmlift2lem3 24992 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( X G z ) )  /\  (
f `  0 )  =  ( H `  X ) ) ) `
 0 )  =  ( H `  X
) ) )
3938simp1d 969 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f ` 
0 )  =  ( H `  X ) ) )  e.  ( II  Cn  C ) )
4033, 33, 36, 39cnmpt21f 17704 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )  e.  ( ( II  tX  II )  Cn  C
) )
4131, 33, 16, 34, 33, 35, 40cnmpt2res 17709 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) )  e.  ( ( ( IIt  { X } ) 
tX  ( IIt  ( 0 [,] 1 ) ) )  Cn  C ) )
42 iitop 18910 . . . . 5  |-  II  e.  Top
43 snex 4405 . . . . 5  |-  { X }  e.  _V
44 ovex 6106 . . . . 5  |-  ( 0 [,] 1 )  e. 
_V
45 txrest 17663 . . . . 5  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( { X }  e.  _V  /\  ( 0 [,] 1 )  e. 
_V ) )  -> 
( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) )  =  ( ( IIt  { X } )  tX  (
IIt 
( 0 [,] 1
) ) ) )
4642, 42, 43, 44, 45mp4an 655 . . . 4  |-  ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( ( IIt  { X } ) 
tX  ( IIt  ( 0 [,] 1 ) ) )
4746oveq1i 6091 . . 3  |-  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) )  Cn  C )  =  ( ( ( IIt  { X } )  tX  (
IIt 
( 0 [,] 1
) ) )  Cn  C )
4841, 47syl6eleqr 2527 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) )  Cn  C ) )
4930, 48eqeltrd 2510 1  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2956    C_ wss 3320   {csn 3814   U.cuni 4015    e. cmpt 4266    X. cxp 4876    |` cres 4880    o. ccom 4882    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   iota_crio 6542   0cc0 8990   1c1 8991   [,]cicc 10919   ↾t crest 13648   Topctop 16958  TopOnctopon 16959    Cn ccn 17288    tX ctx 17592   IIcii 18905   CovMap ccvm 24942
This theorem is referenced by:  cvmlift2lem9  24998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-ec 6907  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-cn 17291  df-cnp 17292  df-cmp 17450  df-con 17475  df-lly 17529  df-nlly 17530  df-tx 17594  df-hmeo 17787  df-xms 18350  df-ms 18351  df-tms 18352  df-ii 18907  df-htpy 18995  df-phtpy 18996  df-phtpc 19017  df-pcon 24908  df-scon 24909  df-cvm 24943
  Copyright terms: Public domain W3C validator