Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem6 Unicode version

Theorem cvmlift2lem6 23839
Description: Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
Distinct variable groups:    x, f,
y, z, F    ph, f, x, y, z    f, J, x, y, z    f, G, x, y, z    f, H, x, y, z    f, X, x, y, z    C, f, x, y, z    P, f, x, y, z    x, B, y, z    f, K, x, y, z
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2lem6
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . 8  |-  B  = 
U. C
2 cvmlift2.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . . . . . 8  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . . . . . 8  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 cvmlift2.k . . . . . . . 8  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 23838 . . . . . . 7  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
98adantr 451 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
10 ffn 5389 . . . . . 6  |-  ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B  ->  K  Fn  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
119, 10syl 15 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  K  Fn  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
12 fnov 5952 . . . . 5  |-  ( K  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  <->  K  =  ( u  e.  (
0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) ) )
1311, 12sylib 188 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  K  =  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) ) )
1413reseq1d 4954 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  =  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u K v ) )  |`  ( { X }  X.  ( 0 [,] 1
) ) ) )
15 simpr 447 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  X  e.  ( 0 [,] 1
) )
1615snssd 3760 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  { X }  C_  ( 0 [,] 1 ) )
17 ssid 3197 . . . . 5  |-  ( 0 [,] 1 )  C_  ( 0 [,] 1
)
18 resmpt2 5942 . . . . 5  |-  ( ( { X }  C_  ( 0 [,] 1
)  /\  ( 0 [,] 1 )  C_  ( 0 [,] 1
) )  ->  (
( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) )  |`  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) ) )
1916, 17, 18sylancl 643 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) )  |`  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) ) )
20 elsni 3664 . . . . . . . 8  |-  ( u  e.  { X }  ->  u  =  X )
21203ad2ant2 977 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  u  =  X )
2221oveq1d 5873 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  ( u K v )  =  ( X K v ) )
23 simp1r 980 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  X  e.  ( 0 [,] 1 ) )
24 simp3 957 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  v  e.  ( 0 [,] 1 ) )
251, 2, 3, 4, 5, 6, 7cvmlift2lem4 23837 . . . . . . 7  |-  ( ( X  e.  ( 0 [,] 1 )  /\  v  e.  ( 0 [,] 1 ) )  ->  ( X K v )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )
2623, 24, 25syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  ( X K v )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )
2722, 26eqtrd 2315 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 [,] 1
) )  /\  u  e.  { X }  /\  v  e.  ( 0 [,] 1 ) )  ->  ( u K v )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )
2827mpt2eq3dva 5912 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( u K v ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) ) )
2919, 28eqtrd 2315 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 ) 
|->  ( u K v ) )  |`  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) ) )
3014, 29eqtrd 2315 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  =  ( u  e. 
{ X } , 
v  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) ) )
31 eqid 2283 . . . 4  |-  ( IIt  { X } )  =  ( IIt 
{ X } )
32 iitopon 18383 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3332a1i 10 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
34 eqid 2283 . . . 4  |-  ( IIt  ( 0 [,] 1 ) )  =  ( IIt  ( 0 [,] 1 ) )
3517a1i 10 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
0 [,] 1 ) 
C_  ( 0 [,] 1 ) )
3633, 33cnmpt2nd 17363 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  v )  e.  ( ( II  tX  II )  Cn  II ) )
37 eqid 2283 . . . . . . 7  |-  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) )  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) )
381, 2, 3, 4, 5, 6, 37cvmlift2lem3 23836 . . . . . 6  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( X G z ) )  /\  (
f `  0 )  =  ( H `  X ) ) ) `
 0 )  =  ( H `  X
) ) )
3938simp1d 967 . . . . 5  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f ` 
0 )  =  ( H `  X ) ) )  e.  ( II  Cn  C ) )
4033, 33, 36, 39cnmpt21f 17366 . . . 4  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  v ) )  e.  ( ( II  tX  II )  Cn  C
) )
4131, 33, 16, 34, 33, 35, 40cnmpt2res 17371 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) )  e.  ( ( ( IIt  { X } ) 
tX  ( IIt  ( 0 [,] 1 ) ) )  Cn  C ) )
42 iitop 18384 . . . . 5  |-  II  e.  Top
43 snex 4216 . . . . 5  |-  { X }  e.  _V
44 ovex 5883 . . . . 5  |-  ( 0 [,] 1 )  e. 
_V
45 txrest 17325 . . . . 5  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( { X }  e.  _V  /\  ( 0 [,] 1 )  e. 
_V ) )  -> 
( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) )  =  ( ( IIt  { X } )  tX  (
IIt 
( 0 [,] 1
) ) ) )
4642, 42, 43, 44, 45mp4an 654 . . . 4  |-  ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  =  ( ( IIt  { X } ) 
tX  ( IIt  ( 0 [,] 1 ) ) )
4746oveq1i 5868 . . 3  |-  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) )  Cn  C )  =  ( ( ( IIt  { X } )  tX  (
IIt 
( 0 [,] 1
) ) )  Cn  C )
4841, 47syl6eleqr 2374 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
u  e.  { X } ,  v  e.  ( 0 [,] 1
)  |->  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) `  v ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) )  Cn  C ) )
4930, 48eqeltrd 2357 1  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   {csn 3640   U.cuni 3827    e. cmpt 4077    X. cxp 4687    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   iota_crio 6297   0cc0 8737   1c1 8738   [,]cicc 10659   ↾t crest 13325   Topctop 16631  TopOnctopon 16632    Cn ccn 16954    tX ctx 17255   IIcii 18379   CovMap ccvm 23786
This theorem is referenced by:  cvmlift2lem9  23842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-cmp 17114  df-con 17138  df-lly 17192  df-nlly 17193  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pcon 23752  df-scon 23753  df-cvm 23787
  Copyright terms: Public domain W3C validator