Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem7 Unicode version

Theorem cvmlift2lem7 24957
Description: Lemma for cvmlift2 24964. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem7  |-  ( ph  ->  ( F  o.  K
)  =  G )
Distinct variable groups:    x, f,
y, z, F    ph, f, x, y, z    f, J, x, y, z    f, G, x, y, z    f, H, x, y, z    C, f, x, y, z    P, f, x, y, z    x, B, y, z    f, K, x, y, z
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2lem7
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . . 9  |-  B  = 
U. C
2 cvmlift2.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . . . . . . 9  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . . . . . . 9  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . . . . . . 9  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 eqid 2412 . . . . . . . . 9  |-  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) )  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) )
81, 2, 3, 4, 5, 6, 7cvmlift2lem3 24953 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 0 )  =  ( H `  x
) ) )
98adantrr 698 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) )  e.  ( II  Cn  C )  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ` 
0 )  =  ( H `  x ) ) )
109simp2d 970 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( F  o.  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) ) )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) ) )
1110fveq1d 5697 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ) `
 y )  =  ( ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) ) `  y ) )
129simp1d 969 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
) )
13 iiuni 18872 . . . . . . . 8  |-  ( 0 [,] 1 )  = 
U. II
1413, 1cnf 17272 . . . . . . 7  |-  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
)  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) : ( 0 [,] 1 ) --> B )
1512, 14syl 16 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) : ( 0 [,] 1
) --> B )
16 simprr 734 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
y  e.  ( 0 [,] 1 ) )
17 fvco3 5767 . . . . . 6  |-  ( ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) : ( 0 [,] 1
) --> B  /\  y  e.  ( 0 [,] 1
) )  ->  (
( F  o.  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) ) ) `  y )  =  ( F `  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
1815, 16, 17syl2anc 643 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ) `
 y )  =  ( F `  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
19 oveq2 6056 . . . . . . 7  |-  ( z  =  y  ->  (
x G z )  =  ( x G y ) )
20 eqid 2412 . . . . . . 7  |-  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )
21 ovex 6073 . . . . . . 7  |-  ( x G y )  e. 
_V
2219, 20, 21fvmpt 5773 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) ) `  y
)  =  ( x G y ) )
2316, 22syl 16 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) ) `  y )  =  ( x G y ) )
2411, 18, 233eqtr3d 2452 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( F `  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) )  =  ( x G y ) )
25243impb 1149 . . 3  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) )  ->  ( F `  ( ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) ) `  y
) )  =  ( x G y ) )
2625mpt2eq3dva 6105 . 2  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( x G y ) ) )
2715, 16ffvelrnd 5838 . . 3  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y )  e.  B )
28 cvmlift2.k . . . 4  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
2928a1i 11 . . 3  |-  ( ph  ->  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
30 cvmcn 24910 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
31 eqid 2412 . . . . . 6  |-  U. J  =  U. J
321, 31cnf 17272 . . . . 5  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
332, 30, 323syl 19 . . . 4  |-  ( ph  ->  F : B --> U. J
)
3433feqmptd 5746 . . 3  |-  ( ph  ->  F  =  ( w  e.  B  |->  ( F `
 w ) ) )
35 fveq2 5695 . . 3  |-  ( w  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) `  y )  ->  ( F `  w )  =  ( F `  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
3627, 29, 34, 35fmpt2co 6397 . 2  |-  ( ph  ->  ( F  o.  K
)  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) `  y ) ) ) )
37 iitop 18871 . . . . . 6  |-  II  e.  Top
3837, 37, 13, 13txunii 17586 . . . . 5  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
3938, 31cnf 17272 . . . 4  |-  ( G  e.  ( ( II 
tX  II )  Cn  J )  ->  G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J
)
40 ffn 5558 . . . 4  |-  ( G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
413, 39, 403syl 19 . . 3  |-  ( ph  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
42 fnov 6145 . . 3  |-  ( G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  <->  G  =  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( x G y ) ) )
4341, 42sylib 189 . 2  |-  ( ph  ->  G  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x G y ) ) )
4426, 36, 433eqtr4d 2454 1  |-  ( ph  ->  ( F  o.  K
)  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   U.cuni 3983    e. cmpt 4234    X. cxp 4843    o. ccom 4849    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   iota_crio 6509   0cc0 8954   1c1 8955   [,]cicc 10883    Cn ccn 17250    tX ctx 17553   IIcii 18866   CovMap ccvm 24903
This theorem is referenced by:  cvmlift2lem9  24959  cvmlift2lem13  24963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-ec 6874  df-map 6987  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ico 10886  df-icc 10887  df-fz 11008  df-fzo 11099  df-fl 11165  df-seq 11287  df-exp 11346  df-hash 11582  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-clim 12245  df-sum 12443  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-mulr 13506  df-starv 13507  df-sca 13508  df-vsca 13509  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-hom 13516  df-cco 13517  df-rest 13613  df-topn 13614  df-topgen 13630  df-pt 13631  df-prds 13634  df-xrs 13689  df-0g 13690  df-gsum 13691  df-qtop 13696  df-imas 13697  df-xps 13699  df-mre 13774  df-mrc 13775  df-acs 13777  df-mnd 14653  df-submnd 14702  df-mulg 14778  df-cntz 15079  df-cmn 15377  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-cnfld 16667  df-top 16926  df-bases 16928  df-topon 16929  df-topsp 16930  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-cn 17253  df-cnp 17254  df-cmp 17412  df-con 17436  df-lly 17490  df-nlly 17491  df-tx 17555  df-hmeo 17748  df-xms 18311  df-ms 18312  df-tms 18313  df-ii 18868  df-htpy 18956  df-phtpy 18957  df-phtpc 18978  df-pcon 24869  df-scon 24870  df-cvm 24904
  Copyright terms: Public domain W3C validator