Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9 Unicode version

Theorem cvmlift2lem9 23857
Description: Lemma for cvmlift2 23862. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
cvmlift2lem10.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmlift2lem9.1  |-  ( ph  ->  ( X G Y )  e.  M )
cvmlift2lem9.2  |-  ( ph  ->  T  e.  ( S `
 M ) )
cvmlift2lem9.3  |-  ( ph  ->  U  e.  II )
cvmlift2lem9.4  |-  ( ph  ->  V  e.  II )
cvmlift2lem9.5  |-  ( ph  ->  ( IIt  U )  e.  Con )
cvmlift2lem9.6  |-  ( ph  ->  ( IIt  V )  e.  Con )
cvmlift2lem9.7  |-  ( ph  ->  X  e.  U )
cvmlift2lem9.8  |-  ( ph  ->  Y  e.  V )
cvmlift2lem9.9  |-  ( ph  ->  ( U  X.  V
)  C_  ( `' G " M ) )
cvmlift2lem9.10  |-  ( ph  ->  Z  e.  V )
cvmlift2lem9.11  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z } ) )  Cn  C ) )
cvmlift2lem9.w  |-  W  =  ( iota_ b  e.  T
( X K Y )  e.  b )
Assertion
Ref Expression
cvmlift2lem9  |-  ( ph  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
Distinct variable groups:    b, c,
d, f, k, s, x, y, z, F    ph, b, f, x, y, z    M, b, c, d, k, s, x, y, z    S, b, f, x, y, z    J, b, c, d, f, k, s, x, y, z    T, b, c, d, s   
z, U    G, b,
c, f, k, x, y, z    W, c, d    H, b, c, f, x, y, z    X, b, c, d, f, k, x, y, z    z, Z    C, b, c, d, f, k, s, x, y, z    P, f, k, x, y, z    B, b, c, d, x, y, z    Y, b, c, d, f, k, x, y, z    K, b, c, d, f, x, y, z
Allowed substitution hints:    ph( k, s, c, d)    B( f, k, s)    P( s, b, c, d)    S( k, s, c, d)    T( x, y, z, f, k)    U( x, y, f, k, s, b, c, d)    G( s, d)    H( k, s, d)    K( k, s)    M( f)    V( x, y, z, f, k, s, b, c, d)    W( x, y, z, f, k, s, b)    X( s)    Y( s)    Z( x, y, f, k, s, b, c, d)

Proof of Theorem cvmlift2lem9
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2  |-  B  = 
U. C
2 iitop 18400 . . 3  |-  II  e.  Top
3 iiuni 18401 . . 3  |-  ( 0 [,] 1 )  = 
U. II
42, 2, 3, 3txunii 17304 . 2  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
5 cvmlift2lem10.s . 2  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
6 cvmlift2.f . 2  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
7 cvmlift2.g . . 3  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
8 cvmlift2.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift2.i . . 3  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
10 cvmlift2.h . . 3  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
11 cvmlift2.k . . 3  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
121, 6, 7, 8, 9, 10, 11cvmlift2lem5 23853 . 2  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
131, 6, 7, 8, 9, 10, 11cvmlift2lem7 23855 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  G )
1413, 7eqeltrd 2370 . 2  |-  ( ph  ->  ( F  o.  K
)  e.  ( ( II  tX  II )  Cn  J ) )
152, 2txtopi 17301 . . 3  |-  ( II 
tX  II )  e. 
Top
1615a1i 10 . 2  |-  ( ph  ->  ( II  tX  II )  e.  Top )
17 cvmlift2lem9.3 . . . . 5  |-  ( ph  ->  U  e.  II )
18 elssuni 3871 . . . . . 6  |-  ( U  e.  II  ->  U  C_ 
U. II )
1918, 3syl6sseqr 3238 . . . . 5  |-  ( U  e.  II  ->  U  C_  ( 0 [,] 1
) )
2017, 19syl 15 . . . 4  |-  ( ph  ->  U  C_  ( 0 [,] 1 ) )
21 cvmlift2lem9.7 . . . 4  |-  ( ph  ->  X  e.  U )
2220, 21sseldd 3194 . . 3  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
23 cvmlift2lem9.4 . . . . 5  |-  ( ph  ->  V  e.  II )
24 elssuni 3871 . . . . . 6  |-  ( V  e.  II  ->  V  C_ 
U. II )
2524, 3syl6sseqr 3238 . . . . 5  |-  ( V  e.  II  ->  V  C_  ( 0 [,] 1
) )
2623, 25syl 15 . . . 4  |-  ( ph  ->  V  C_  ( 0 [,] 1 ) )
27 cvmlift2lem9.8 . . . 4  |-  ( ph  ->  Y  e.  V )
2826, 27sseldd 3194 . . 3  |-  ( ph  ->  Y  e.  ( 0 [,] 1 ) )
29 opelxpi 4737 . . 3  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  <. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
3022, 28, 29syl2anc 642 . 2  |-  ( ph  -> 
<. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
31 cvmlift2lem9.2 . 2  |-  ( ph  ->  T  e.  ( S `
 M ) )
32 fovrn 6006 . . . . 5  |-  ( ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  ( X K Y )  e.  B
)
3312, 22, 28, 32syl3anc 1182 . . . 4  |-  ( ph  ->  ( X K Y )  e.  B )
34 fvco3 5612 . . . . . . . 8  |-  ( ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  K ) `  <. X ,  Y >. )  =  ( F `  ( K `  <. X ,  Y >. ) ) )
3512, 30, 34syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( F  o.  K ) `  <. X ,  Y >. )  =  ( F `  ( K `  <. X ,  Y >. ) ) )
3613fveq1d 5543 . . . . . . 7  |-  ( ph  ->  ( ( F  o.  K ) `  <. X ,  Y >. )  =  ( G `  <. X ,  Y >. ) )
3735, 36eqtr3d 2330 . . . . . 6  |-  ( ph  ->  ( F `  ( K `  <. X ,  Y >. ) )  =  ( G `  <. X ,  Y >. )
)
38 df-ov 5877 . . . . . . 7  |-  ( X K Y )  =  ( K `  <. X ,  Y >. )
3938fveq2i 5544 . . . . . 6  |-  ( F `
 ( X K Y ) )  =  ( F `  ( K `  <. X ,  Y >. ) )
40 df-ov 5877 . . . . . 6  |-  ( X G Y )  =  ( G `  <. X ,  Y >. )
4137, 39, 403eqtr4g 2353 . . . . 5  |-  ( ph  ->  ( F `  ( X K Y ) )  =  ( X G Y ) )
42 cvmlift2lem9.1 . . . . 5  |-  ( ph  ->  ( X G Y )  e.  M )
4341, 42eqeltrd 2370 . . . 4  |-  ( ph  ->  ( F `  ( X K Y ) )  e.  M )
44 cvmlift2lem9.w . . . . 5  |-  W  =  ( iota_ b  e.  T
( X K Y )  e.  b )
455, 1, 44cvmsiota 23823 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  M )  /\  ( X K Y )  e.  B  /\  ( F `
 ( X K Y ) )  e.  M ) )  -> 
( W  e.  T  /\  ( X K Y )  e.  W ) )
466, 31, 33, 43, 45syl13anc 1184 . . 3  |-  ( ph  ->  ( W  e.  T  /\  ( X K Y )  e.  W ) )
4738eleq1i 2359 . . . 4  |-  ( ( X K Y )  e.  W  <->  ( K `  <. X ,  Y >. )  e.  W )
4847anbi2i 675 . . 3  |-  ( ( W  e.  T  /\  ( X K Y )  e.  W )  <->  ( W  e.  T  /\  ( K `  <. X ,  Y >. )  e.  W
) )
4946, 48sylib 188 . 2  |-  ( ph  ->  ( W  e.  T  /\  ( K `  <. X ,  Y >. )  e.  W ) )
50 xpss12 4808 . . 3  |-  ( ( U  C_  ( 0 [,] 1 )  /\  V  C_  ( 0 [,] 1 ) )  -> 
( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
5120, 26, 50syl2anc 642 . 2  |-  ( ph  ->  ( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
52 snidg 3678 . . . . . . 7  |-  ( m  e.  U  ->  m  e.  { m } )
5352ad2antrl 708 . . . . . 6  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  m  e.  { m } )
54 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  n  e.  V )
55 ovres 6003 . . . . . 6  |-  ( ( m  e.  { m }  /\  n  e.  V
)  ->  ( m
( K  |`  ( { m }  X.  V ) ) n )  =  ( m K n ) )
5653, 54, 55syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) n )  =  ( m K n ) )
57 eqid 2296 . . . . . . . 8  |-  U. (
( II  tX  II )t  ( { m }  X.  V ) )  = 
U. ( ( II 
tX  II )t  ( { m }  X.  V
) )
582a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  II  e.  Top )
59 snex 4232 . . . . . . . . . . 11  |-  { m }  e.  _V
6059a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  { m }  e.  _V )
6123adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  V  e.  II )
62 txrest 17341 . . . . . . . . . 10  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( { m }  e.  _V  /\  V  e.  II ) )  -> 
( ( II  tX  II )t  ( { m }  X.  V ) )  =  ( ( IIt  {
m } )  tX  ( IIt  V ) ) )
6358, 58, 60, 61, 62syl22anc 1183 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( II  tX  II )t  ( { m }  X.  V ) )  =  ( ( IIt  {
m } )  tX  ( IIt  V ) ) )
64 iitopon 18399 . . . . . . . . . . . 12  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
6520sselda 3193 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  U )  ->  m  e.  ( 0 [,] 1
) )
6665adantrr 697 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  m  e.  ( 0 [,] 1 ) )
67 restsn2 16918 . . . . . . . . . . . 12  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  m  e.  ( 0 [,] 1
) )  ->  (
IIt  { m } )  =  ~P { m } )
6864, 66, 67sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( IIt  { m } )  =  ~P { m } )
69 pwsn 3837 . . . . . . . . . . . 12  |-  ~P {
m }  =  { (/)
,  { m } }
70 indiscon 17160 . . . . . . . . . . . 12  |-  { (/) ,  { m } }  e.  Con
7169, 70eqeltri 2366 . . . . . . . . . . 11  |-  ~P {
m }  e.  Con
7268, 71syl6eqel 2384 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( IIt  { m } )  e.  Con )
73 cvmlift2lem9.6 . . . . . . . . . . 11  |-  ( ph  ->  ( IIt  V )  e.  Con )
7473adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( IIt  V )  e.  Con )
75 txcon 17399 . . . . . . . . . 10  |-  ( ( ( IIt  { m } )  e.  Con  /\  (
IIt 
V )  e.  Con )  ->  ( ( IIt  {
m } )  tX  ( IIt  V ) )  e. 
Con )
7672, 74, 75syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( IIt  { m } )  tX  (
IIt 
V ) )  e. 
Con )
7763, 76eqeltrd 2370 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( II  tX  II )t  ( { m }  X.  V ) )  e.  Con )
781, 6, 7, 8, 9, 10, 11cvmlift2lem6 23854 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { m }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )  Cn  C ) )
7966, 78syldan 456 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
8026adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  V  C_  ( 0 [,] 1 ) )
81 xpss2 4812 . . . . . . . . . . . . 13  |-  ( V 
C_  ( 0 [,] 1 )  ->  ( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) ) )
8280, 81syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) ) )
8366snssd 3776 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  { m }  C_  ( 0 [,] 1
) )
84 xpss1 4811 . . . . . . . . . . . . . 14  |-  ( { m }  C_  (
0 [,] 1 )  ->  ( { m }  X.  ( 0 [,] 1 ) )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
8583, 84syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  ( 0 [,] 1
) )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
864restuni 16909 . . . . . . . . . . . . 13  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { m }  X.  ( 0 [,] 1
) )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( {
m }  X.  (
0 [,] 1 ) )  =  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) ) )
8715, 85, 86sylancr 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  ( 0 [,] 1
) )  =  U. ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1 ) ) ) )
8882, 87sseqtrd 3227 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) ) )
89 eqid 2296 . . . . . . . . . . . 12  |-  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )  = 
U. ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )
9089cnrest 17029 . . . . . . . . . . 11  |-  ( ( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )  Cn  C
)  /\  ( {
m }  X.  V
)  C_  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) ) )  ->  ( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
) )
9179, 88, 90syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
) )
92 resabs1 5000 . . . . . . . . . . . 12  |-  ( ( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) )  ->  (
( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  =  ( K  |`  ( { m }  X.  V ) ) )
9382, 92syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  =  ( K  |`  ( { m }  X.  V ) ) )
9415a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( II  tX  II )  e.  Top )
95 ovex 5899 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  e. 
_V
9659, 95xpex 4817 . . . . . . . . . . . . . 14  |-  ( { m }  X.  (
0 [,] 1 ) )  e.  _V
9796a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  ( 0 [,] 1
) )  e.  _V )
98 restabs 16912 . . . . . . . . . . . . 13  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) )  /\  ( { m }  X.  ( 0 [,] 1
) )  e.  _V )  ->  ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  =  ( ( II  tX  II )t  ( { m }  X.  V ) ) )
9994, 82, 97, 98syl3anc 1182 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )t  ( { m }  X.  V ) )  =  ( ( II 
tX  II )t  ( { m }  X.  V
) ) )
10099oveq1d 5889 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
)  =  ( ( ( II  tX  II )t  ( { m }  X.  V ) )  Cn  C ) )
10193, 100eleq12d 2364 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  C
) ) )
10291, 101mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  C
) )
103 cvmtop1 23806 . . . . . . . . . . . . 13  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
1046, 103syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  Top )
105104adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  C  e.  Top )
1061toptopon 16687 . . . . . . . . . . 11  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
107105, 106sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  C  e.  (TopOn `  B
) )
108 df-ima 4718 . . . . . . . . . . 11  |-  ( K
" ( { m }  X.  V ) )  =  ran  ( K  |`  ( { m }  X.  V ) )
109 simprl 732 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  m  e.  U )
110109snssd 3776 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  { m }  C_  U )
111 xpss1 4811 . . . . . . . . . . . . . 14  |-  ( { m }  C_  U  ->  ( { m }  X.  V )  C_  ( U  X.  V ) )
112110, 111syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  ( U  X.  V ) )
113 imass2 5065 . . . . . . . . . . . . 13  |-  ( ( { m }  X.  V )  C_  ( U  X.  V )  -> 
( K " ( { m }  X.  V ) )  C_  ( K " ( U  X.  V ) ) )
114112, 113syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K " ( { m }  X.  V ) )  C_  ( K " ( U  X.  V ) ) )
115 cvmlift2lem9.9 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  X.  V
)  C_  ( `' G " M ) )
116 imaco 5194 . . . . . . . . . . . . . . . 16  |-  ( ( `' K  o.  `' F ) " M
)  =  ( `' K " ( `' F " M ) )
117 cnvco 4881 . . . . . . . . . . . . . . . . . 18  |-  `' ( F  o.  K )  =  ( `' K  o.  `' F )
11813cnveqd 4873 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  `' ( F  o.  K )  =  `' G )
119117, 118syl5eqr 2342 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( `' K  o.  `' F )  =  `' G )
120119imaeq1d 5027 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( `' K  o.  `' F ) " M
)  =  ( `' G " M ) )
121116, 120syl5eqr 2342 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( `' K "
( `' F " M ) )  =  ( `' G " M ) )
122115, 121sseqtr4d 3228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  X.  V
)  C_  ( `' K " ( `' F " M ) ) )
123 ffun 5407 . . . . . . . . . . . . . . . 16  |-  ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B  ->  Fun  K )
12412, 123syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Fun  K )
125 fdm 5409 . . . . . . . . . . . . . . . . 17  |-  ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B  ->  dom  K  =  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
12612, 125syl 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  K  =  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
12751, 126sseqtr4d 3228 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  X.  V
)  C_  dom  K )
128 funimass3 5657 . . . . . . . . . . . . . . 15  |-  ( ( Fun  K  /\  ( U  X.  V )  C_  dom  K )  ->  (
( K " ( U  X.  V ) ) 
C_  ( `' F " M )  <->  ( U  X.  V )  C_  ( `' K " ( `' F " M ) ) ) )
129124, 127, 128syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( K "
( U  X.  V
) )  C_  ( `' F " M )  <-> 
( U  X.  V
)  C_  ( `' K " ( `' F " M ) ) ) )
130122, 129mpbird 223 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K " ( U  X.  V ) ) 
C_  ( `' F " M ) )
131130adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K " ( U  X.  V ) ) 
C_  ( `' F " M ) )
132114, 131sstrd 3202 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K " ( { m }  X.  V ) )  C_  ( `' F " M ) )
133108, 132syl5eqssr 3236 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  ran  ( K  |`  ( { m }  X.  V ) )  C_  ( `' F " M ) )
134 cnvimass 5049 . . . . . . . . . . . 12  |-  ( `' F " M ) 
C_  dom  F
135 cvmcn 23808 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
1366, 135syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( C  Cn  J ) )
137 eqid 2296 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
1381, 137cnf 16992 . . . . . . . . . . . . . 14  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
139136, 138syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  F : B --> U. J
)
140 fdm 5409 . . . . . . . . . . . . 13  |-  ( F : B --> U. J  ->  dom  F  =  B )
141139, 140syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =  B )
142134, 141syl5sseq 3239 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F " M )  C_  B
)
143142adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( `' F " M )  C_  B
)
144 cnrest2 17030 . . . . . . . . . 10  |-  ( ( C  e.  (TopOn `  B )  /\  ran  ( K  |`  ( { m }  X.  V
) )  C_  ( `' F " M )  /\  ( `' F " M )  C_  B
)  ->  ( ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II  tX  II )t  ( { m }  X.  V ) )  Cn  C )  <->  ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
145107, 133, 143, 144syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
146102, 145mpbid 201 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) )
1475cvmsss 23813 . . . . . . . . . . . 12  |-  ( T  e.  ( S `  M )  ->  T  C_  C )
14831, 147syl 15 . . . . . . . . . . 11  |-  ( ph  ->  T  C_  C )
14946simpld 445 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  T )
150148, 149sseldd 3194 . . . . . . . . . 10  |-  ( ph  ->  W  e.  C )
151 elssuni 3871 . . . . . . . . . . . 12  |-  ( W  e.  T  ->  W  C_ 
U. T )
152149, 151syl 15 . . . . . . . . . . 11  |-  ( ph  ->  W  C_  U. T )
1535cvmsuni 23815 . . . . . . . . . . . 12  |-  ( T  e.  ( S `  M )  ->  U. T  =  ( `' F " M ) )
15431, 153syl 15 . . . . . . . . . . 11  |-  ( ph  ->  U. T  =  ( `' F " M ) )
155152, 154sseqtrd 3227 . . . . . . . . . 10  |-  ( ph  ->  W  C_  ( `' F " M ) )
1565cvmsrcl 23810 . . . . . . . . . . . . 13  |-  ( T  e.  ( S `  M )  ->  M  e.  J )
15731, 156syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  J )
158 cnima 17010 . . . . . . . . . . . 12  |-  ( ( F  e.  ( C  Cn  J )  /\  M  e.  J )  ->  ( `' F " M )  e.  C
)
159136, 157, 158syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F " M )  e.  C
)
160 restopn2 16924 . . . . . . . . . . 11  |-  ( ( C  e.  Top  /\  ( `' F " M )  e.  C )  -> 
( W  e.  ( Ct  ( `' F " M ) )  <->  ( W  e.  C  /\  W  C_  ( `' F " M ) ) ) )
161104, 159, 160syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  ( Ct  ( `' F " M ) )  <->  ( W  e.  C  /\  W  C_  ( `' F " M ) ) ) )
162150, 155, 161mpbir2and 888 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Ct  ( `' F " M ) ) )
163162adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  W  e.  ( Ct  ( `' F " M ) ) )
1645cvmscld 23819 . . . . . . . . . 10  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  M
)  /\  W  e.  T )  ->  W  e.  ( Clsd `  ( Ct  ( `' F " M ) ) ) )
1656, 31, 149, 164syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Clsd `  ( Ct  ( `' F " M ) ) ) )
166165adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  W  e.  ( Clsd `  ( Ct  ( `' F " M ) ) ) )
167 cvmlift2lem9.10 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  V )
168167adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  Z  e.  V )
169 opelxpi 4737 . . . . . . . . . 10  |-  ( ( m  e.  { m }  /\  Z  e.  V
)  ->  <. m ,  Z >.  e.  ( { m }  X.  V ) )
17053, 168, 169syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  <. m ,  Z >.  e.  ( { m }  X.  V ) )
17182, 85sstrd 3202 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
1724restuni 16909 . . . . . . . . . 10  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { m }  X.  V )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( {
m }  X.  V
)  =  U. (
( II  tX  II )t  ( { m }  X.  V ) ) )
17315, 171, 172sylancr 644 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  =  U. ( ( II  tX  II )t  ( { m }  X.  V ) ) )
174170, 173eleqtrd 2372 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  <. m ,  Z >.  e. 
U. ( ( II 
tX  II )t  ( { m }  X.  V
) ) )
175 df-ov 5877 . . . . . . . . . 10  |-  ( m ( K  |`  ( { m }  X.  V ) ) Z )  =  ( ( K  |`  ( {
m }  X.  V
) ) `  <. m ,  Z >. )
176 ovres 6003 . . . . . . . . . . . 12  |-  ( ( m  e.  { m }  /\  Z  e.  V
)  ->  ( m
( K  |`  ( { m }  X.  V ) ) Z )  =  ( m K Z ) )
17753, 168, 176syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) Z )  =  ( m K Z ) )
178 snidg 3678 . . . . . . . . . . . . . 14  |-  ( Z  e.  V  ->  Z  e.  { Z } )
179167, 178syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Z  e.  { Z } )
180179adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  Z  e.  { Z } )
181 ovres 6003 . . . . . . . . . . . 12  |-  ( ( m  e.  U  /\  Z  e.  { Z } )  ->  (
m ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( m K Z ) )
182109, 180, 181syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( m K Z ) )
183177, 182eqtr4d 2331 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) Z )  =  ( m ( K  |`  ( U  X.  { Z }
) ) Z ) )
184175, 183syl5eqr 2342 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) ) `  <. m ,  Z >. )  =  ( m ( K  |`  ( U  X.  { Z } ) ) Z ) )
185 eqid 2296 . . . . . . . . . . . . 13  |-  U. (
( II  tX  II )t  ( U  X.  { Z } ) )  = 
U. ( ( II 
tX  II )t  ( U  X.  { Z }
) )
1862a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  II  e.  Top )
187 snex 4232 . . . . . . . . . . . . . . . 16  |-  { Z }  e.  _V
188187a1i 10 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { Z }  e.  _V )
189 txrest 17341 . . . . . . . . . . . . . . 15  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( U  e.  II  /\  { Z }  e.  _V ) )  ->  (
( II  tX  II )t  ( U  X.  { Z } ) )  =  ( ( IIt  U ) 
tX  ( IIt  { Z } ) ) )
190186, 186, 17, 188, 189syl22anc 1183 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( II  tX  II )t  ( U  X.  { Z } ) )  =  ( ( IIt  U )  tX  ( IIt  { Z } ) ) )
191 cvmlift2lem9.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( IIt  U )  e.  Con )
19226, 167sseldd 3194 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  e.  ( 0 [,] 1 ) )
193 restsn2 16918 . . . . . . . . . . . . . . . . 17  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  Z  e.  ( 0 [,] 1
) )  ->  (
IIt  { Z } )  =  ~P { Z }
)
19464, 192, 193sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( IIt  { Z } )  =  ~P { Z } )
195 pwsn 3837 . . . . . . . . . . . . . . . . 17  |-  ~P { Z }  =  { (/)
,  { Z } }
196 indiscon 17160 . . . . . . . . . . . . . . . . 17  |-  { (/) ,  { Z } }  e.  Con
197195, 196eqeltri 2366 . . . . . . . . . . . . . . . 16  |-  ~P { Z }  e.  Con
198194, 197syl6eqel 2384 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( IIt  { Z } )  e.  Con )
199 txcon 17399 . . . . . . . . . . . . . . 15  |-  ( ( ( IIt  U )  e.  Con  /\  ( IIt  { Z } )  e.  Con )  -> 
( ( IIt  U ) 
tX  ( IIt  { Z } ) )  e. 
Con )
200191, 198, 199syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( IIt  U ) 
tX  ( IIt  { Z } ) )  e. 
Con )
201190, 200eqeltrd 2370 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( II  tX  II )t  ( U  X.  { Z } ) )  e.  Con )
202 cvmlift2lem9.11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z } ) )  Cn  C ) )
203104, 106sylib 188 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  (TopOn `  B ) )
204 df-ima 4718 . . . . . . . . . . . . . . . 16  |-  ( K
" ( U  X.  { Z } ) )  =  ran  ( K  |`  ( U  X.  { Z } ) )
205167snssd 3776 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  { Z }  C_  V )
206 xpss2 4812 . . . . . . . . . . . . . . . . . . 19  |-  ( { Z }  C_  V  ->  ( U  X.  { Z } )  C_  ( U  X.  V ) )
207205, 206syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  X.  { Z } )  C_  ( U  X.  V ) )
208 imass2 5065 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  X.  { Z } )  C_  ( U  X.  V )  -> 
( K " ( U  X.  { Z }
) )  C_  ( K " ( U  X.  V ) ) )
209207, 208syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K " ( U  X.  { Z }
) )  C_  ( K " ( U  X.  V ) ) )
210209, 130sstrd 3202 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K " ( U  X.  { Z }
) )  C_  ( `' F " M ) )
211204, 210syl5eqssr 3236 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  ( K  |`  ( U  X.  { Z } ) )  C_  ( `' F " M ) )
212 cnrest2 17030 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  (TopOn `  B )  /\  ran  ( K  |`  ( U  X.  { Z }
) )  C_  ( `' F " M )  /\  ( `' F " M )  C_  B
)  ->  ( ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z }
) )  Cn  C
)  <->  ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Z }
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
213203, 211, 142, 212syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Z }
) )  Cn  C
)  <->  ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Z }
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
214202, 213mpbid 201 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z } ) )  Cn  ( Ct  ( `' F " M ) ) ) )
215 opelxpi 4737 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  U  /\  Z  e.  { Z } )  ->  <. X ,  Z >.  e.  ( U  X.  { Z }
) )
21621, 179, 215syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ph  -> 
<. X ,  Z >.  e.  ( U  X.  { Z } ) )
217192snssd 3776 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Z }  C_  ( 0 [,] 1
) )
218 xpss12 4808 . . . . . . . . . . . . . . . 16  |-  ( ( U  C_  ( 0 [,] 1 )  /\  { Z }  C_  (
0 [,] 1 ) )  ->  ( U  X.  { Z } ) 
C_  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
21920, 217, 218syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  X.  { Z } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
2204restuni 16909 . . . . . . . . . . . . . . 15  |-  ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  { Z }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( U  X.  { Z } )  = 
U. ( ( II 
tX  II )t  ( U  X.  { Z }
) ) )
22115, 219, 220sylancr 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  X.  { Z } )  =  U. ( ( II  tX  II )t  ( U  X.  { Z } ) ) )
222216, 221eleqtrd 2372 . . . . . . . . . . . . 13  |-  ( ph  -> 
<. X ,  Z >.  e. 
U. ( ( II 
tX  II )t  ( U  X.  { Z }
) ) )
223 df-ov 5877 . . . . . . . . . . . . . . 15  |-  ( X ( K  |`  ( U  X.  { Z }
) ) Z )  =  ( ( K  |`  ( U  X.  { Z } ) ) `  <. X ,  Z >. )
224 ovres 6003 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  U  /\  Z  e.  { Z } )  ->  ( X ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( X K Z ) )
22521, 179, 224syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( X K Z ) )
226 snidg 3678 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  U  ->  X  e.  { X } )
22721, 226syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  { X } )
228 ovres 6003 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  { X }  /\  Z  e.  V
)  ->  ( X
( K  |`  ( { X }  X.  V
) ) Z )  =  ( X K Z ) )
229227, 167, 228syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X ( K  |`  ( { X }  X.  V ) ) Z )  =  ( X K Z ) )
230225, 229eqtr4d 2331 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( X ( K  |`  ( { X }  X.  V
) ) Z ) )
231223, 230syl5eqr 2342 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) ) `  <. X ,  Z >. )  =  ( X ( K  |`  ( { X }  X.  V
) ) Z ) )
232 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  U. (
( II  tX  II )t  ( { X }  X.  V ) )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  V
) )
233 snex 4232 . . . . . . . . . . . . . . . . . . . 20  |-  { X }  e.  _V
234233a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  { X }  e.  _V )
235 txrest 17341 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( { X }  e.  _V  /\  V  e.  II ) )  -> 
( ( II  tX  II )t  ( { X }  X.  V ) )  =  ( ( IIt  { X } )  tX  (
IIt 
V ) ) )
236186, 186, 234, 23, 235syl22anc 1183 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( II  tX  II )t  ( { X }  X.  V ) )  =  ( ( IIt  { X } )  tX  (
IIt 
V ) ) )
237 restsn2 16918 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  X  e.  ( 0 [,] 1
) )  ->  (
IIt  { X } )  =  ~P { X }
)
23864, 22, 237sylancr 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( IIt  { X } )  =  ~P { X } )
239 pwsn 3837 . . . . . . . . . . . . . . . . . . . . 21  |-  ~P { X }  =  { (/)
,  { X } }
240 indiscon 17160 . . . . . . . . . . . . . . . . . . . . 21  |-  { (/) ,  { X } }  e.  Con
241239, 240eqeltri 2366 . . . . . . . . . . . . . . . . . . . 20  |-  ~P { X }  e.  Con
242238, 241syl6eqel 2384 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( IIt  { X } )  e.  Con )
243 txcon 17399 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( IIt  { X } )  e.  Con  /\  (
IIt 
V )  e.  Con )  ->  ( ( IIt  { X } )  tX  (
IIt 
V ) )  e. 
Con )
244242, 73, 243syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( IIt  { X } )  tX  (
IIt 
V ) )  e. 
Con )
245236, 244eqeltrd 2370 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( II  tX  II )t  ( { X }  X.  V ) )  e.  Con )
2461, 6, 7, 8, 9, 10, 11cvmlift2lem6 23854 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
24722, 246mpdan 649 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  |`  ( { X }  X.  (
0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) )  Cn  C ) )
248 xpss2 4812 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( V 
C_  ( 0 [,] 1 )  ->  ( { X }  X.  V
)  C_  ( { X }  X.  (
0 [,] 1 ) ) )
24926, 248syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( { X }  X.  V )  C_  ( { X }  X.  (
0 [,] 1 ) ) )
25022snssd 3776 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { X }  C_  ( 0 [,] 1
) )
251 xpss1 4811 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { X }  C_  (
0 [,] 1 )  ->  ( { X }  X.  ( 0 [,] 1 ) )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
252250, 251syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( { X }  X.  ( 0 [,] 1
) )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
2534restuni 16909 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { X }  X.  (
0 [,] 1 ) )  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( { X }  X.  ( 0 [,] 1 ) )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) ) )
25415, 252, 253sylancr 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( { X }  X.  ( 0 [,] 1
) )  =  U. ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) ) )
255249, 254sseqtrd 3227 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( { X }  X.  V )  C_  U. (
( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) ) )
256 eqid 2296 . . . . . . . . . . . . . . . . . . . . 21  |-  U. (
( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )
257256cnrest 17029 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  |`  ( { X }  X.  (
0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) )  Cn  C )  /\  ( { X }  X.  V )  C_  U. (
( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) ) )  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C ) )
258247, 255, 257syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C ) )
259 resabs1 5000 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( { X }  X.  V )  C_  ( { X }  X.  (
0 [,] 1 ) )  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  |`  ( { X }  X.  V ) )  =  ( K  |`  ( { X }  X.  V
) ) )
260249, 259syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  =  ( K  |`  ( { X }  X.  V
) ) )
261233, 95xpex 4817 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { X }  X.  (
0 [,] 1 ) )  e.  _V
262261a1i 10 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( { X }  X.  ( 0 [,] 1
) )  e.  _V )
263 restabs 16912 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { X }  X.  V
)  C_  ( { X }  X.  (
0 [,] 1 ) )  /\  ( { X }  X.  (
0 [,] 1 ) )  e.  _V )  ->  ( ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  =  ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
26416, 249, 262, 263syl3anc 1182 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  =  ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
265264oveq1d 5889 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C )  =  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  C
) )
266260, 265eleq12d 2364 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C )  <->  ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  C
) ) )
267258, 266mpbid 201 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  V ) )  Cn  C ) )
268 df-ima 4718 . . . . . . . . . . . . . . . . . . . 20  |-  ( K
" ( { X }  X.  V ) )  =  ran  ( K  |`  ( { X }  X.  V ) )
26921snssd 3776 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { X }  C_  U )
270 xpss1 4811 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { X }  C_  U  ->  ( { X }  X.  V )  C_  ( U  X.  V ) )
271269, 270syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( { X }  X.  V )  C_  ( U  X.  V ) )
272 imass2 5065 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { X }  X.  V )  C_  ( U  X.  V )  -> 
( K " ( { X }  X.  V
) )  C_  ( K " ( U  X.  V ) ) )
273271, 272syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( K " ( { X }  X.  V
) )  C_  ( K " ( U  X.  V ) ) )
274273, 130sstrd 3202 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K " ( { X }  X.  V
) )  C_  ( `' F " M ) )
275268, 274syl5eqssr 3236 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ran  ( K  |`  ( { X }  X.  V ) )  C_  ( `' F " M ) )
276 cnrest2 17030 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  (TopOn `  B )  /\  ran  ( K  |`  ( { X }  X.  V
) )  C_  ( `' F " M )  /\  ( `' F " M )  C_  B
)  ->  ( ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
277203, 275, 142, 276syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
278267, 277mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  V ) )  Cn  ( Ct  ( `' F " M ) ) ) )
279 opelxpi 4737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  { X }  /\  Y  e.  V
)  ->  <. X ,  Y >.  e.  ( { X }  X.  V
) )
280227, 27, 279syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
<. X ,  Y >.  e.  ( { X }  X.  V ) )
281271, 51sstrd 3202 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( { X }  X.  V )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
2824restuni 16909 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { X }  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( { X }  X.  V )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
28315, 281, 282sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( { X }  X.  V )  =  U. ( ( II  tX  II )t  ( { X }  X.  V ) ) )
284280, 283eleqtrd 2372 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
<. X ,  Y >.  e. 
U. ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
285 df-ov 5877 . . . . . . . . . . . . . . . . . . 19  |-  ( X ( K  |`  ( { X }  X.  V
) ) Y )  =  ( ( K  |`  ( { X }  X.  V ) ) `  <. X ,  Y >. )
286 ovres 6003 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( X  e.  { X }  /\  Y  e.  V
)  ->  ( X
( K  |`  ( { X }  X.  V
) ) Y )  =  ( X K Y ) )
287227, 27, 286syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X ( K  |`  ( { X }  X.  V ) ) Y )  =  ( X K Y ) )
288285, 287syl5eqr 2342 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) ) `  <. X ,  Y >. )  =  ( X K Y ) )
28946simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X K Y )  e.  W )
290288, 289eqeltrd 2370 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) ) `  <. X ,  Y >. )  e.  W )
291232, 245, 278, 162, 165, 284, 290concn 17168 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) ) : U. ( ( II  tX  II )t  ( { X }  X.  V ) ) --> W )
292283feq2d 5396 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) ) : ( { X }  X.  V ) --> W  <->  ( K  |`  ( { X }  X.  V ) ) : U. ( ( II 
tX  II )t  ( { X }  X.  V
) ) --> W ) )
293291, 292mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) ) : ( { X }  X.  V ) --> W )
294 fovrn 6006 . . . . . . . . . . . . . . 15  |-  ( ( ( K  |`  ( { X }  X.  V
) ) : ( { X }  X.  V ) --> W  /\  X  e.  { X }  /\  Z  e.  V
)  ->  ( X
( K  |`  ( { X }  X.  V
) ) Z )  e.  W )
295293, 227, 167, 294syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X ( K  |`  ( { X }  X.  V ) ) Z )  e.  W )
296231, 295eqeltrd 2370 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) ) `  <. X ,  Z >. )  e.  W )
297185, 201, 214, 162, 165, 222, 296concn 17168 . . . . . . . . . . . 12  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) ) : U. ( ( II  tX  II )t  ( U  X.  { Z } ) ) --> W )
298221feq2d 5396 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) ) : ( U  X.  { Z } ) --> W  <->  ( K  |`  ( U  X.  { Z } ) ) : U. ( ( II 
tX  II )t  ( U  X.  { Z }
) ) --> W ) )
299297, 298mpbird 223 . . . . . . . . . . 11  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) ) : ( U  X.  { Z } ) --> W )
300299adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( U  X.  { Z }
) ) : ( U  X.  { Z } ) --> W )
301 fovrn 6006 . . . . . . . . . 10  |-  ( ( ( K  |`  ( U  X.  { Z }
) ) : ( U  X.  { Z } ) --> W  /\  m  e.  U  /\  Z  e.  { Z } )  ->  (
m ( K  |`  ( U  X.  { Z } ) ) Z )  e.  W )
302300, 109, 180, 301syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( U  X.  { Z } ) ) Z )  e.  W )
303184, 302eqeltrd 2370 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) ) `  <. m ,  Z >. )  e.  W )
30457, 77, 146, 163, 166, 174, 303concn 17168 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) ) : U. ( ( II 
tX  II )t  ( { m }  X.  V
) ) --> W )
305173feq2d 5396 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) ) : ( { m }  X.  V ) --> W  <->  ( K  |`  ( { m }  X.  V ) ) : U. ( ( II 
tX  II )t  ( { m }  X.  V
) ) --> W ) )
306304, 305mpbird 223 . . . . . 6  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) ) : ( { m }  X.  V ) --> W )
307 fovrn 6006 . . . . . 6  |-  ( ( ( K  |`  ( { m }  X.  V ) ) : ( { m }  X.  V ) --> W  /\  m  e.  { m }  /\  n  e.  V
)  ->  ( m
( K  |`  ( { m }  X.  V ) ) n )  e.  W )
308306, 53, 54, 307syl3anc 1182 . . . . 5  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) n )  e.  W )
30956, 308eqeltrrd 2371 . . . 4  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m K n )  e.  W )
310309ralrimivva 2648 . . 3  |-  ( ph  ->  A. m  e.  U  A. n  e.  V  ( m K n )  e.  W )
311 funimassov 6013 . . . 4  |-  ( ( Fun  K  /\  ( U  X.  V )  C_  dom  K )  ->  (
( K " ( U  X.  V ) ) 
C_  W  <->  A. m  e.  U  A. n  e.  V  ( m K n )  e.  W ) )
312124, 127, 311syl2anc 642 . . 3  |-  ( ph  ->  ( ( K "
( U  X.  V
) )  C_  W  <->  A. m  e.  U  A. n  e.  V  (
m K n )  e.  W ) )
313310, 312mpbird 223 . 2  |-  ( ph  ->  ( K " ( U  X.  V ) ) 
C_  W )
3141, 4, 5, 6, 12, 14, 16, 30, 31, 49, 51, 313cvmlift2lem9a 23849 1  |-  ( ph  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   {cpr 3654   <.cop 3656   U.cuni 3843    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708    o. ccom 4709   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   iota_crio 6313   0cc0 8753   1c1 8754   [,]cicc 10675   ↾t crest 13341   Topctop 16647  TopOnctopon 16648   Clsdccld 16769    Cn ccn 16970   Conccon 17153    tX ctx 17271    Homeo chmeo 17460   IIcii 18395   CovMap ccvm 23801
This theorem is referenced by:  cvmlift2lem10  23858
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-ec 6678  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-cn 16973  df-cnp 16974  df-cmp 17130  df-con 17154  df-lly 17208  df-nlly 17209  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-ii 18397  df-htpy 18484  df-phtpy 18485  df-phtpc 18506  df-pcon 23767  df-scon 23768  df-cvm 23802
  Copyright terms: Public domain W3C validator