Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3 Unicode version

Theorem cvmlift3 24263
Description: A general version of cvmlift 24234. If  K is simply connected and weakly locally path-connected, then there is a unique lift of functions on  K which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
Assertion
Ref Expression
cvmlift3  |-  ( ph  ->  E! f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Distinct variable groups:    f, J    f, F    B, f    f, G    C, f    ph, f    f, K    P, f    f, O   
f, Y

Proof of Theorem cvmlift3
Dummy variables  b 
c  d  k  s  z  g  a  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3  |-  B  = 
U. C
2 cvmlift3.y . . 3  |-  Y  = 
U. K
3 cvmlift3.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . 3  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . 3  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . 3  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . 3  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 eqeq2 2367 . . . . . . . 8  |-  ( b  =  z  ->  (
( ( iota_ d  e.  ( II  Cn  C
) ( ( F  o.  d )  =  ( G  o.  c
)  /\  ( d `  0 )  =  P ) ) ` 
1 )  =  b  <-> 
( ( iota_ d  e.  ( II  Cn  C
) ( ( F  o.  d )  =  ( G  o.  c
)  /\  ( d `  0 )  =  P ) ) ` 
1 )  =  z ) )
11103anbi3d 1258 . . . . . . 7  |-  ( b  =  z  ->  (
( ( c ` 
0 )  =  O  /\  ( c ` 
1 )  =  a  /\  ( ( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  (
d `  0 )  =  P ) ) ` 
1 )  =  b )  <->  ( ( c `
 0 )  =  O  /\  ( c `
 1 )  =  a  /\  ( (
iota_ d  e.  (
II  Cn  C )
( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
1211rexbidv 2640 . . . . . 6  |-  ( b  =  z  ->  ( E. c  e.  (
II  Cn  K )
( ( c ` 
0 )  =  O  /\  ( c ` 
1 )  =  a  /\  ( ( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  (
d `  0 )  =  P ) ) ` 
1 )  =  b )  <->  E. c  e.  ( II  Cn  K ) ( ( c ` 
0 )  =  O  /\  ( c ` 
1 )  =  a  /\  ( ( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  (
d `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
1312cbvriotav 6403 . . . . 5  |-  ( iota_ b  e.  B E. c  e.  ( II  Cn  K
) ( ( c `
 0 )  =  O  /\  ( c `
 1 )  =  a  /\  ( (
iota_ d  e.  (
II  Cn  C )
( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  b ) )  =  ( iota_ z  e.  B E. c  e.  ( II  Cn  K
) ( ( c `
 0 )  =  O  /\  ( c `
 1 )  =  a  /\  ( (
iota_ d  e.  (
II  Cn  C )
( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  z ) )
14 fveq1 5607 . . . . . . . . . 10  |-  ( c  =  f  ->  (
c `  0 )  =  ( f ` 
0 ) )
1514eqeq1d 2366 . . . . . . . . 9  |-  ( c  =  f  ->  (
( c `  0
)  =  O  <->  ( f `  0 )  =  O ) )
16 fveq1 5607 . . . . . . . . . 10  |-  ( c  =  f  ->  (
c `  1 )  =  ( f ` 
1 ) )
1716eqeq1d 2366 . . . . . . . . 9  |-  ( c  =  f  ->  (
( c `  1
)  =  a  <->  ( f `  1 )  =  a ) )
18 coeq2 4924 . . . . . . . . . . . . . . 15  |-  ( d  =  g  ->  ( F  o.  d )  =  ( F  o.  g ) )
1918eqeq1d 2366 . . . . . . . . . . . . . 14  |-  ( d  =  g  ->  (
( F  o.  d
)  =  ( G  o.  c )  <->  ( F  o.  g )  =  ( G  o.  c ) ) )
20 fveq1 5607 . . . . . . . . . . . . . . 15  |-  ( d  =  g  ->  (
d `  0 )  =  ( g ` 
0 ) )
2120eqeq1d 2366 . . . . . . . . . . . . . 14  |-  ( d  =  g  ->  (
( d `  0
)  =  P  <->  ( g `  0 )  =  P ) )
2219, 21anbi12d 691 . . . . . . . . . . . . 13  |-  ( d  =  g  ->  (
( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P )  <->  ( ( F  o.  g )  =  ( G  o.  c
)  /\  ( g `  0 )  =  P ) ) )
2322cbvriotav 6403 . . . . . . . . . . . 12  |-  ( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  (
d `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  c )  /\  ( g ` 
0 )  =  P ) )
24 coeq2 4924 . . . . . . . . . . . . . . 15  |-  ( c  =  f  ->  ( G  o.  c )  =  ( G  o.  f ) )
2524eqeq2d 2369 . . . . . . . . . . . . . 14  |-  ( c  =  f  ->  (
( F  o.  g
)  =  ( G  o.  c )  <->  ( F  o.  g )  =  ( G  o.  f ) ) )
2625anbi1d 685 . . . . . . . . . . . . 13  |-  ( c  =  f  ->  (
( ( F  o.  g )  =  ( G  o.  c )  /\  ( g ` 
0 )  =  P )  <->  ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) )
2726riotabidv 6393 . . . . . . . . . . . 12  |-  ( c  =  f  ->  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  c )  /\  ( g `  0
)  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) )
2823, 27syl5eq 2402 . . . . . . . . . . 11  |-  ( c  =  f  ->  ( iota_ d  e.  ( II 
Cn  C ) ( ( F  o.  d
)  =  ( G  o.  c )  /\  ( d `  0
)  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) )
2928fveq1d 5610 . . . . . . . . . 10  |-  ( c  =  f  ->  (
( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
) )
3029eqeq1d 2366 . . . . . . . . 9  |-  ( c  =  f  ->  (
( ( iota_ d  e.  ( II  Cn  C
) ( ( F  o.  d )  =  ( G  o.  c
)  /\  ( d `  0 )  =  P ) ) ` 
1 )  =  z  <-> 
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  z ) )
3115, 17, 303anbi123d 1252 . . . . . . . 8  |-  ( c  =  f  ->  (
( ( c ` 
0 )  =  O  /\  ( c ` 
1 )  =  a  /\  ( ( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  (
d `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  a  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
3231cbvrexv 2841 . . . . . . 7  |-  ( E. c  e.  ( II 
Cn  K ) ( ( c `  0
)  =  O  /\  ( c `  1
)  =  a  /\  ( ( iota_ d  e.  ( II  Cn  C
) ( ( F  o.  d )  =  ( G  o.  c
)  /\  ( d `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  a  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )
33 eqeq2 2367 . . . . . . . . 9  |-  ( a  =  x  ->  (
( f `  1
)  =  a  <->  ( f `  1 )  =  x ) )
34333anbi2d 1257 . . . . . . . 8  |-  ( a  =  x  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  a  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  x  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
3534rexbidv 2640 . . . . . . 7  |-  ( a  =  x  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  a  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
3632, 35syl5bb 248 . . . . . 6  |-  ( a  =  x  ->  ( E. c  e.  (
II  Cn  K )
( ( c ` 
0 )  =  O  /\  ( c ` 
1 )  =  a  /\  ( ( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  (
d `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
3736riotabidv 6393 . . . . 5  |-  ( a  =  x  ->  ( iota_ z  e.  B E. c  e.  ( II  Cn  K ) ( ( c `  0 )  =  O  /\  (
c `  1 )  =  a  /\  (
( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  x  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
3813, 37syl5eq 2402 . . . 4  |-  ( a  =  x  ->  ( iota_ b  e.  B E. c  e.  ( II  Cn  K ) ( ( c `  0 )  =  O  /\  (
c `  1 )  =  a  /\  (
( iota_ d  e.  ( II  Cn  C ) ( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  b ) )  =  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  x  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
3938cbvmptv 4192 . . 3  |-  ( a  e.  Y  |->  ( iota_ b  e.  B E. c  e.  ( II  Cn  K
) ( ( c `
 0 )  =  O  /\  ( c `
 1 )  =  a  /\  ( (
iota_ d  e.  (
II  Cn  C )
( ( F  o.  d )  =  ( G  o.  c )  /\  ( d ` 
0 )  =  P ) ) `  1
)  =  b ) ) )  =  ( x  e.  Y  |->  (
iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
40 eqid 2358 . . . 4  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. c  e.  s  ( A. d  e.  (
s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) } )  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
4140cvmscbv 24193 . . 3  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. c  e.  s  ( A. d  e.  (
s  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )  Homeo  ( Jt  k ) ) ) ) } )  =  ( a  e.  J  |->  { b  e.  ( ~P C  \  { (/)
} )  |  ( U. b  =  ( `' F " a )  /\  A. v  e.  b  ( A. u  e.  ( b  \  {
v } ) ( v  i^i  u )  =  (/)  /\  ( F  |`  v )  e.  ( ( Ct  v ) 
Homeo  ( Jt  a ) ) ) ) } )
421, 2, 3, 4, 5, 6, 7, 8, 9, 39, 41cvmlift3lem9 24262 . 2  |-  ( ph  ->  E. f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
43 sconpcon 24162 . . . 4  |-  ( K  e. SCon  ->  K  e. PCon )
44 pconcon 24166 . . . 4  |-  ( K  e. PCon  ->  K  e.  Con )
454, 43, 443syl 18 . . 3  |-  ( ph  ->  K  e.  Con )
46 pconcon 24166 . . . . . 6  |-  ( x  e. PCon  ->  x  e.  Con )
4746ssriv 3260 . . . . 5  |- PCon  C_  Con
48 nllyss 17312 . . . . 5  |-  (PCon  C_  Con  -> 𝑛Locally PCon  C_ 𝑛Locally  Con )
4947, 48ax-mp 8 . . . 4  |- 𝑛Locally PCon  C_ 𝑛Locally  Con
5049, 5sseldi 3254 . . 3  |-  ( ph  ->  K  e. 𝑛Locally  Con )
511, 2, 3, 45, 50, 6, 7, 8, 9cvmliftmo 24219 . 2  |-  ( ph  ->  E* f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
52 reu5 2829 . 2  |-  ( E! f  e.  ( K  Cn  C ) ( ( F  o.  f
)  =  G  /\  ( f `  O
)  =  P )  <-> 
( E. f  e.  ( K  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 O )  =  P )  /\  E* f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  O )  =  P ) ) )
5342, 51, 52sylanbrc 645 1  |-  ( ph  ->  E! f  e.  ( K  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f `  O )  =  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620   E!wreu 2621   E*wrmo 2622   {crab 2623    \ cdif 3225    i^i cin 3227    C_ wss 3228   (/)c0 3531   ~Pcpw 3701   {csn 3716   U.cuni 3908    e. cmpt 4158   `'ccnv 4770    |` cres 4773   "cima 4774    o. ccom 4775   ` cfv 5337  (class class class)co 5945   iota_crio 6384   0cc0 8827   1c1 8828   ↾t crest 13424    Cn ccn 17060   Conccon 17243  𝑛Locally cnlly 17297    Homeo chmeo 17550   IIcii 18482  PConcpcon 24154  SConcscon 24155   CovMap ccvm 24190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-ec 6749  df-map 6862  df-ixp 6906  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-hom 13329  df-cco 13330  df-rest 13426  df-topn 13427  df-topgen 13443  df-pt 13444  df-prds 13447  df-xrs 13502  df-0g 13503  df-gsum 13504  df-qtop 13509  df-imas 13510  df-xps 13512  df-mre 13587  df-mrc 13588  df-acs 13590  df-mnd 14466  df-submnd 14515  df-mulg 14591  df-cntz 14892  df-cmn 15190  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-cnfld 16483  df-top 16742  df-bases 16744  df-topon 16745  df-topsp 16746  df-cld 16862  df-ntr 16863  df-cls 16864  df-nei 16941  df-cn 17063  df-cnp 17064  df-cmp 17220  df-con 17244  df-lly 17298  df-nlly 17299  df-tx 17363  df-hmeo 17552  df-xms 17987  df-ms 17988  df-tms 17989  df-ii 18484  df-htpy 18572  df-phtpy 18573  df-phtpc 18594  df-pco 18607  df-pcon 24156  df-scon 24157  df-cvm 24191
  Copyright terms: Public domain W3C validator