Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem8 Unicode version

Theorem cvmlift3lem8 23857
Description: Lemma for cvmlift2 23847. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
cvmlift3lem7.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmlift3lem8  |-  ( ph  ->  H  e.  ( K  Cn  C ) )
Distinct variable groups:    c, d,
f, k, s, z, g, x    J, c   
g, d, x, J, f, k, s    F, c, d, f, g, k, s    x, z, F    H, c, d, f, g, x, z    S, f, x    B, d, f, g, x, z    G, c, d, f, g, k, x, z    C, c, d, f, g, k, s, x, z    ph, f, x    K, c, f, g, x, z    P, c, d, f, g, x, z    O, c, f, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g, k, s, c, d)    B( k, s, c)    P( k, s)    S( z, g, k, s, c, d)    G( s)    H( k, s)    J( z)    K( k, s, d)    O( k, s, d)    Y( k, s, c, d)

Proof of Theorem cvmlift3lem8
Dummy variables  b 
a  v  y  m  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3  |-  B  = 
U. C
2 cvmlift3.y . . 3  |-  Y  = 
U. K
3 cvmlift3.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . 3  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . 3  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . 3  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . 3  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . 3  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . 3  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 23852 . 2  |-  ( ph  ->  H : Y --> B )
123adantr 451 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  F  e.  ( C CovMap  J ) )
13 eqid 2283 . . . . . . . 8  |-  U. J  =  U. J
142, 13cnf 16976 . . . . . . 7  |-  ( G  e.  ( K  Cn  J )  ->  G : Y --> U. J )
157, 14syl 15 . . . . . 6  |-  ( ph  ->  G : Y --> U. J
)
16 ffvelrn 5663 . . . . . 6  |-  ( ( G : Y --> U. J  /\  y  e.  Y
)  ->  ( G `  y )  e.  U. J )
1715, 16sylan 457 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( G `  y )  e.  U. J )
18 cvmlift3lem7.s . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
1918, 13cvmcov 23794 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  ( G `  y )  e.  U. J )  ->  E. a  e.  J  ( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) ) )
2012, 17, 19syl2anc 642 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  E. a  e.  J  ( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) ) )
21 n0 3464 . . . . . . 7  |-  ( ( S `  a )  =/=  (/)  <->  E. t  t  e.  ( S `  a
) )
225ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  K  e. 𝑛Locally PCon )
237ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  G  e.  ( K  Cn  J ) )
24 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  t  e.  ( S `  a ) )
2518cvmsrcl 23795 . . . . . . . . . . . . 13  |-  ( t  e.  ( S `  a )  ->  a  e.  J )
2624, 25syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  a  e.  J
)
27 cnima 16994 . . . . . . . . . . . 12  |-  ( ( G  e.  ( K  Cn  J )  /\  a  e.  J )  ->  ( `' G "
a )  e.  K
)
2823, 26, 27syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( `' G " a )  e.  K
)
29 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  y  e.  Y
)
30 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( G `  y )  e.  a )
3123, 14syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  G : Y --> U. J )
32 ffn 5389 . . . . . . . . . . . . 13  |-  ( G : Y --> U. J  ->  G  Fn  Y )
33 elpreima 5645 . . . . . . . . . . . . 13  |-  ( G  Fn  Y  ->  (
y  e.  ( `' G " a )  <-> 
( y  e.  Y  /\  ( G `  y
)  e.  a ) ) )
3431, 32, 333syl 18 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( y  e.  ( `' G "
a )  <->  ( y  e.  Y  /\  ( G `  y )  e.  a ) ) )
3529, 30, 34mpbir2and 888 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  y  e.  ( `' G " a ) )
36 nlly2i 17202 . . . . . . . . . . 11  |-  ( ( K  e. 𝑛Locally PCon  /\  ( `' G " a )  e.  K  /\  y  e.  ( `' G " a ) )  ->  E. m  e.  ~P  ( `' G " a ) E. v  e.  K  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) )
3722, 28, 35, 36syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  E. m  e.  ~P  ( `' G " a ) E. v  e.  K  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon )
)
383ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  F  e.  ( C CovMap  J ) )
394ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  K  e. SCon )
405ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  K  e. 𝑛Locally PCon )
416ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  O  e.  Y )
427ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  G  e.  ( K  Cn  J
) )
438ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  P  e.  B )
449ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  ( F `  P )  =  ( G `  O ) )
4530adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  ( G `  y )  e.  a )
4624adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  t  e.  ( S `  a ) )
47 simprll 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  m  e.  ~P ( `' G "
a ) )
48 elpwi 3633 . . . . . . . . . . . . . 14  |-  ( m  e.  ~P ( `' G " a )  ->  m  C_  ( `' G " a ) )
4947, 48syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  m  C_  ( `' G " a ) )
50 eqid 2283 . . . . . . . . . . . . 13  |-  ( iota_ b  e.  t ( H `
 y )  e.  b )  =  (
iota_ b  e.  t
( H `  y
)  e.  b )
51 simprr3 1005 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  ( Kt  m
)  e. PCon )
52 simprlr 739 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  v  e.  K )
53 simprr2 1004 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  v  C_  m )
54 simprr1 1003 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  y  e.  v )
551, 2, 38, 39, 40, 41, 42, 43, 44, 10, 18, 45, 46, 49, 50, 51, 52, 53, 54cvmlift3lem7 23856 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
( m  e.  ~P ( `' G " a )  /\  v  e.  K
)  /\  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon ) ) )  ->  H  e.  ( ( K  CnP  C ) `  y ) )
5655expr 598 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  ( ( G `  y )  e.  a  /\  t  e.  ( S `  a ) ) )  /\  (
m  e.  ~P ( `' G " a )  /\  v  e.  K
) )  ->  (
( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon )  ->  H  e.  ( ( K  CnP  C ) `
 y ) ) )
5756rexlimdvva 2674 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  ( E. m  e.  ~P  ( `' G " a ) E. v  e.  K  ( y  e.  v  /\  v  C_  m  /\  ( Kt  m )  e. PCon )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
5837, 57mpd 14 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Y )  /\  (
( G `  y
)  e.  a  /\  t  e.  ( S `  a ) ) )  ->  H  e.  ( ( K  CnP  C
) `  y )
)
5958expr 598 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Y )  /\  ( G `  y )  e.  a )  ->  (
t  e.  ( S `
 a )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
6059exlimdv 1664 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Y )  /\  ( G `  y )  e.  a )  ->  ( E. t  t  e.  ( S `  a )  ->  H  e.  ( ( K  CnP  C
) `  y )
) )
6121, 60syl5bi 208 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Y )  /\  ( G `  y )  e.  a )  ->  (
( S `  a
)  =/=  (/)  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
6261expimpd 586 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  (
( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
6362rexlimdvw 2670 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( E. a  e.  J  ( ( G `  y )  e.  a  /\  ( S `  a )  =/=  (/) )  ->  H  e.  ( ( K  CnP  C ) `  y ) ) )
6420, 63mpd 14 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  H  e.  ( ( K  CnP  C ) `  y ) )
6564ralrimiva 2626 . 2  |-  ( ph  ->  A. y  e.  Y  H  e.  ( ( K  CnP  C ) `  y ) )
66 scontop 23759 . . . . 5  |-  ( K  e. SCon  ->  K  e.  Top )
674, 66syl 15 . . . 4  |-  ( ph  ->  K  e.  Top )
682toptopon 16671 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
6967, 68sylib 188 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
70 cvmtop1 23791 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
713, 70syl 15 . . . 4  |-  ( ph  ->  C  e.  Top )
721toptopon 16671 . . . 4  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
7371, 72sylib 188 . . 3  |-  ( ph  ->  C  e.  (TopOn `  B ) )
74 cncnp 17009 . . 3  |-  ( ( K  e.  (TopOn `  Y )  /\  C  e.  (TopOn `  B )
)  ->  ( H  e.  ( K  Cn  C
)  <->  ( H : Y
--> B  /\  A. y  e.  Y  H  e.  ( ( K  CnP  C ) `  y ) ) ) )
7569, 73, 74syl2anc 642 . 2  |-  ( ph  ->  ( H  e.  ( K  Cn  C )  <-> 
( H : Y --> B  /\  A. y  e.  Y  H  e.  ( ( K  CnP  C
) `  y )
) ) )
7611, 65, 75mpbir2and 888 1  |-  ( ph  ->  H  e.  ( K  Cn  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827    e. cmpt 4077   `'ccnv 4688    |` cres 4691   "cima 4692    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   iota_crio 6297   0cc0 8737   1c1 8738   ↾t crest 13325   Topctop 16631  TopOnctopon 16632    Cn ccn 16954    CnP ccnp 16955  𝑛Locally cnlly 17191    Homeo chmeo 17444   IIcii 18379  PConcpcon 23750  SConcscon 23751   CovMap ccvm 23786
This theorem is referenced by:  cvmlift3lem9  23858
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-cmp 17114  df-con 17138  df-lly 17192  df-nlly 17193  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pco 18503  df-pcon 23752  df-scon 23753  df-cvm 23787
  Copyright terms: Public domain W3C validator