Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem1 Unicode version

Theorem cvmliftlem1 23816
Description: Lemma for cvmlift 23830. In cvmliftlem15 23829, we picked an  N large enough so that the sections  ( G " [ ( k  -  1 )  /  N ,  k  /  N ] ) are all contained in an even covering, and the function  T enumerates these even coverings. So  1st `  ( T `  M
) is a neighborhood of  ( G " [
( M  -  1 )  /  N ,  M  /  N ] ), and  2nd `  ( T `  M ) is an even covering of  1st `  ( T `  M ), which is to say a disjoint union of open sets in  C whose image is  1st `  ( T `
 M ). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem1.m  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
Assertion
Ref Expression
cvmliftlem1  |-  ( (
ph  /\  ps )  ->  ( 2nd `  ( T `  M )
)  e.  ( S `
 ( 1st `  ( T `  M )
) ) )
Distinct variable groups:    v, B    j, k, s, u, v, F    j, M, k, s, u, v    P, k, u, v    C, j, k, s, u, v    ph, j, s    k, N, u, v    S, j, k, s, u, v   
j, X    j, G, k, s, u, v    T, j, k, s, u, v   
j, J, k, s, u, v
Allowed substitution hints:    ph( v, u, k)    ps( v, u, j, k, s)    B( u, j, k, s)    P( j, s)    L( v, u, j, k, s)    N( j, s)    X( v, u, k, s)

Proof of Theorem cvmliftlem1
StepHypRef Expression
1 relxp 4794 . . . . . 6  |-  Rel  ( { j }  X.  ( S `  j ) )
21rgenw 2610 . . . . 5  |-  A. j  e.  J  Rel  ( { j }  X.  ( S `  j )
)
3 reliun 4806 . . . . 5  |-  ( Rel  U_ j  e.  J  ( { j }  X.  ( S `  j ) )  <->  A. j  e.  J  Rel  ( { j }  X.  ( S `  j ) ) )
42, 3mpbir 200 . . . 4  |-  Rel  U_ j  e.  J  ( {
j }  X.  ( S `  j )
)
5 cvmliftlem.t . . . . . 6  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
65adantr 451 . . . . 5  |-  ( (
ph  /\  ps )  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
7 cvmliftlem1.m . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
8 ffvelrn 5663 . . . . 5  |-  ( ( T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) )  /\  M  e.  ( 1 ... N
) )  ->  ( T `  M )  e.  U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
96, 7, 8syl2anc 642 . . . 4  |-  ( (
ph  /\  ps )  ->  ( T `  M
)  e.  U_ j  e.  J  ( {
j }  X.  ( S `  j )
) )
10 1st2nd 6166 . . . 4  |-  ( ( Rel  U_ j  e.  J  ( { j }  X.  ( S `  j ) )  /\  ( T `
 M )  e. 
U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )  ->  ( T `  M )  =  <. ( 1st `  ( T `  M )
) ,  ( 2nd `  ( T `  M
) ) >. )
114, 9, 10sylancr 644 . . 3  |-  ( (
ph  /\  ps )  ->  ( T `  M
)  =  <. ( 1st `  ( T `  M ) ) ,  ( 2nd `  ( T `  M )
) >. )
1211, 9eqeltrrd 2358 . 2  |-  ( (
ph  /\  ps )  -> 
<. ( 1st `  ( T `  M )
) ,  ( 2nd `  ( T `  M
) ) >.  e.  U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
13 fveq2 5525 . . . 4  |-  ( j  =  ( 1st `  ( T `  M )
)  ->  ( S `  j )  =  ( S `  ( 1st `  ( T `  M
) ) ) )
1413opeliunxp2 4824 . . 3  |-  ( <.
( 1st `  ( T `  M )
) ,  ( 2nd `  ( T `  M
) ) >.  e.  U_ j  e.  J  ( { j }  X.  ( S `  j ) )  <->  ( ( 1st `  ( T `  M
) )  e.  J  /\  ( 2nd `  ( T `  M )
)  e.  ( S `
 ( 1st `  ( T `  M )
) ) ) )
1514simprbi 450 . 2  |-  ( <.
( 1st `  ( T `  M )
) ,  ( 2nd `  ( T `  M
) ) >.  e.  U_ j  e.  J  ( { j }  X.  ( S `  j ) )  ->  ( 2nd `  ( T `  M
) )  e.  ( S `  ( 1st `  ( T `  M
) ) ) )
1612, 15syl 15 1  |-  ( (
ph  /\  ps )  ->  ( 2nd `  ( T `  M )
)  e.  ( S `
 ( 1st `  ( T `  M )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   <.cop 3643   U.cuni 3827   U_ciun 3905    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   ran crn 4690    |` cres 4691   "cima 4692   Rel wrel 4694   -->wf 5251   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   0cc0 8737   1c1 8738    - cmin 9037    / cdiv 9423   NNcn 9746   (,)cioo 10656   [,]cicc 10659   ...cfz 10782   ↾t crest 13325   topGenctg 13342    Cn ccn 16954    Homeo chmeo 17444   IIcii 18379   CovMap ccvm 23786
This theorem is referenced by:  cvmliftlem6  23821  cvmliftlem8  23823  cvmliftlem9  23824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-1st 6122  df-2nd 6123
  Copyright terms: Public domain W3C validator