Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem13 Unicode version

Theorem cvmliftlem13 24763
Description: Lemma for cvmlift 24766. The initial value of  K is  P because  Q ( 1 ) is a subset of  K which takes value  P at  0. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem.k  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
Assertion
Ref Expression
cvmliftlem13  |-  ( ph  ->  ( K `  0
)  =  P )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    P, b,
k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    K( x, z, v, u, j, k, m, s, b)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem13
StepHypRef Expression
1 cvmliftlem.1 . . . . . . 7  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
2 cvmliftlem.b . . . . . . 7  |-  B  = 
U. C
3 cvmliftlem.x . . . . . . 7  |-  X  = 
U. J
4 cvmliftlem.f . . . . . . 7  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmliftlem.g . . . . . . 7  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cvmliftlem.p . . . . . . 7  |-  ( ph  ->  P  e.  B )
7 cvmliftlem.e . . . . . . 7  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
8 cvmliftlem.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
9 cvmliftlem.t . . . . . . 7  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
10 cvmliftlem.a . . . . . . 7  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
11 cvmliftlem.l . . . . . . 7  |-  L  =  ( topGen `  ran  (,) )
12 cvmliftlem.q . . . . . . 7  |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
13 cvmliftlem.k . . . . . . 7  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 24762 . . . . . 6  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
1514simpld 446 . . . . 5  |-  ( ph  ->  K  e.  ( II 
Cn  C ) )
16 iiuni 18783 . . . . . 6  |-  ( 0 [,] 1 )  = 
U. II
1716, 2cnf 17233 . . . . 5  |-  ( K  e.  ( II  Cn  C )  ->  K : ( 0 [,] 1 ) --> B )
1815, 17syl 16 . . . 4  |-  ( ph  ->  K : ( 0 [,] 1 ) --> B )
19 ffun 5534 . . . 4  |-  ( K : ( 0 [,] 1 ) --> B  ->  Fun  K )
2018, 19syl 16 . . 3  |-  ( ph  ->  Fun  K )
21 nnuz 10454 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
228, 21syl6eleq 2478 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
23 eluzfz1 10997 . . . . . 6  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
2422, 23syl 16 . . . . 5  |-  ( ph  ->  1  e.  ( 1 ... N ) )
25 fveq2 5669 . . . . . 6  |-  ( k  =  1  ->  ( Q `  k )  =  ( Q ` 
1 ) )
2625ssiun2s 4077 . . . . 5  |-  ( 1  e.  ( 1 ... N )  ->  ( Q `  1 )  C_ 
U_ k  e.  ( 1 ... N ) ( Q `  k
) )
2724, 26syl 16 . . . 4  |-  ( ph  ->  ( Q `  1
)  C_  U_ k  e.  ( 1 ... N
) ( Q `  k ) )
2827, 13syl6sseqr 3339 . . 3  |-  ( ph  ->  ( Q `  1
)  C_  K )
29 0xr 9065 . . . . . . 7  |-  0  e.  RR*
3029a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  RR* )
318nnrecred 9978 . . . . . . 7  |-  ( ph  ->  ( 1  /  N
)  e.  RR )
3231rexrd 9068 . . . . . 6  |-  ( ph  ->  ( 1  /  N
)  e.  RR* )
33 1re 9024 . . . . . . . 8  |-  1  e.  RR
3433a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  RR )
35 0le1 9484 . . . . . . . 8  |-  0  <_  1
3635a1i 11 . . . . . . 7  |-  ( ph  ->  0  <_  1 )
378nnred 9948 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
388nngt0d 9976 . . . . . . 7  |-  ( ph  ->  0  <  N )
39 divge0 9812 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( 1  /  N ) )
4034, 36, 37, 38, 39syl22anc 1185 . . . . . 6  |-  ( ph  ->  0  <_  ( 1  /  N ) )
41 lbicc2 10946 . . . . . 6  |-  ( ( 0  e.  RR*  /\  (
1  /  N )  e.  RR*  /\  0  <_  ( 1  /  N
) )  ->  0  e.  ( 0 [,] (
1  /  N ) ) )
4230, 32, 40, 41syl3anc 1184 . . . . 5  |-  ( ph  ->  0  e.  ( 0 [,] ( 1  /  N ) ) )
43 1m1e0 10001 . . . . . . . 8  |-  ( 1  -  1 )  =  0
4443oveq1i 6031 . . . . . . 7  |-  ( ( 1  -  1 )  /  N )  =  ( 0  /  N
)
458nncnd 9949 . . . . . . . 8  |-  ( ph  ->  N  e.  CC )
468nnne0d 9977 . . . . . . . 8  |-  ( ph  ->  N  =/=  0 )
4745, 46div0d 9722 . . . . . . 7  |-  ( ph  ->  ( 0  /  N
)  =  0 )
4844, 47syl5eq 2432 . . . . . 6  |-  ( ph  ->  ( ( 1  -  1 )  /  N
)  =  0 )
4948oveq1d 6036 . . . . 5  |-  ( ph  ->  ( ( ( 1  -  1 )  /  N ) [,] (
1  /  N ) )  =  ( 0 [,] ( 1  /  N ) ) )
5042, 49eleqtrrd 2465 . . . 4  |-  ( ph  ->  0  e.  ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) )
51 eqid 2388 . . . . . . . 8  |-  ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) )  =  ( ( ( 1  -  1 )  /  N ) [,] (
1  /  N ) )
52 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  1  e.  ( 1 ... N
) )
531, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 51cvmliftlem7 24758 . . . . . . . 8  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  (
( Q `  (
1  -  1 ) ) `  ( ( 1  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( 1  -  1 )  /  N
) ) } ) )
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 51, 52, 53cvmliftlem6 24757 . . . . . . 7  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  (
( Q `  1
) : ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) --> B  /\  ( F  o.  ( Q `  1 ) )  =  ( G  |`  ( ( ( 1  -  1 )  /  N ) [,] (
1  /  N ) ) ) ) )
5524, 54mpdan 650 . . . . . 6  |-  ( ph  ->  ( ( Q ` 
1 ) : ( ( ( 1  -  1 )  /  N
) [,] ( 1  /  N ) ) --> B  /\  ( F  o.  ( Q ` 
1 ) )  =  ( G  |`  (
( ( 1  -  1 )  /  N
) [,] ( 1  /  N ) ) ) ) )
5655simpld 446 . . . . 5  |-  ( ph  ->  ( Q `  1
) : ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) --> B )
57 fdm 5536 . . . . 5  |-  ( ( Q `  1 ) : ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N
) ) --> B  ->  dom  ( Q `  1
)  =  ( ( ( 1  -  1 )  /  N ) [,] ( 1  /  N ) ) )
5856, 57syl 16 . . . 4  |-  ( ph  ->  dom  ( Q ` 
1 )  =  ( ( ( 1  -  1 )  /  N
) [,] ( 1  /  N ) ) )
5950, 58eleqtrrd 2465 . . 3  |-  ( ph  ->  0  e.  dom  ( Q `  1 )
)
60 funssfv 5687 . . 3  |-  ( ( Fun  K  /\  ( Q `  1 )  C_  K  /\  0  e. 
dom  ( Q ` 
1 ) )  -> 
( K `  0
)  =  ( ( Q `  1 ) `
 0 ) )
6120, 28, 59, 60syl3anc 1184 . 2  |-  ( ph  ->  ( K `  0
)  =  ( ( Q `  1 ) `
 0 ) )
621, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem9 24760 . . . 4  |-  ( (
ph  /\  1  e.  ( 1 ... N
) )  ->  (
( Q `  1
) `  ( (
1  -  1 )  /  N ) )  =  ( ( Q `
 ( 1  -  1 ) ) `  ( ( 1  -  1 )  /  N
) ) )
6324, 62mpdan 650 . . 3  |-  ( ph  ->  ( ( Q ` 
1 ) `  (
( 1  -  1 )  /  N ) )  =  ( ( Q `  ( 1  -  1 ) ) `
 ( ( 1  -  1 )  /  N ) ) )
6448fveq2d 5673 . . 3  |-  ( ph  ->  ( ( Q ` 
1 ) `  (
( 1  -  1 )  /  N ) )  =  ( ( Q `  1 ) `
 0 ) )
6543fveq2i 5672 . . . . . 6  |-  ( Q `
 ( 1  -  1 ) )  =  ( Q `  0
)
661, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cvmliftlem4 24755 . . . . . 6  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
6765, 66eqtri 2408 . . . . 5  |-  ( Q `
 ( 1  -  1 ) )  =  { <. 0 ,  P >. }
6867a1i 11 . . . 4  |-  ( ph  ->  ( Q `  (
1  -  1 ) )  =  { <. 0 ,  P >. } )
6968, 48fveq12d 5675 . . 3  |-  ( ph  ->  ( ( Q `  ( 1  -  1 ) ) `  (
( 1  -  1 )  /  N ) )  =  ( {
<. 0 ,  P >. } `  0 ) )
7063, 64, 693eqtr3d 2428 . 2  |-  ( ph  ->  ( ( Q ` 
1 ) `  0
)  =  ( {
<. 0 ,  P >. } `  0 ) )
71 0nn0 10169 . . 3  |-  0  e.  NN0
72 fvsng 5867 . . 3  |-  ( ( 0  e.  NN0  /\  P  e.  B )  ->  ( { <. 0 ,  P >. } `  0
)  =  P )
7371, 6, 72sylancr 645 . 2  |-  ( ph  ->  ( { <. 0 ,  P >. } `  0
)  =  P )
7461, 70, 733eqtrd 2424 1  |-  ( ph  ->  ( K `  0
)  =  P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   {crab 2654   _Vcvv 2900    \ cdif 3261    u. cun 3262    i^i cin 3263    C_ wss 3264   (/)c0 3572   ~Pcpw 3743   {csn 3758   <.cop 3761   U.cuni 3958   U_ciun 4036   class class class wbr 4154    e. cmpt 4208    _I cid 4435    X. cxp 4817   `'ccnv 4818   dom cdm 4819   ran crn 4820    |` cres 4821   "cima 4822    o. ccom 4823   Fun wfun 5389   -->wf 5391   ` cfv 5395  (class class class)co 6021    e. cmpt2 6023   1stc1st 6287   2ndc2nd 6288   iota_crio 6479   RRcr 8923   0cc0 8924   1c1 8925   RR*cxr 9053    < clt 9054    <_ cle 9055    - cmin 9224    / cdiv 9610   NNcn 9933   NN0cn0 10154   ZZ>=cuz 10421   (,)cioo 10849   [,]cicc 10852   ...cfz 10976    seq cseq 11251   ↾t crest 13576   topGenctg 13593    Cn ccn 17211    Homeo chmeo 17707   IIcii 18777   CovMap ccvm 24722
This theorem is referenced by:  cvmliftlem14  24764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-icc 10856  df-fz 10977  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-rest 13578  df-topgen 13595  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-top 16887  df-bases 16889  df-topon 16890  df-cld 17007  df-cn 17214  df-hmeo 17709  df-ii 18779  df-cvm 24723
  Copyright terms: Public domain W3C validator