Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem14 Unicode version

Theorem cvmliftlem14 24972
Description: Lemma for cvmlift 24974. Putting the results of cvmliftlem11 24970, cvmliftlem13 24971 and cvmliftmo 24959 together, we have that  K is a continuous function, satisfies  F  o.  K  =  G and  K ( 0 )  =  P, and is equal to any other function which also has these properties, so it follows that  K is the unique lift of  G. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem.k  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
Assertion
Ref Expression
cvmliftlem14  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
Distinct variable groups:    v, b,
z, B    f, b,
j, k, m, s, u, x, F, v, z    z, L    f, K    P, b, f, k, m, u, v, x, z    C, b, f, j, k, s, u, v, z    ph, f, j, s, x, z    N, b, k, m, u, v, x, z    S, b, f, j, k, s, u, v, x, z   
j, X    G, b,
f, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, f, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, f, j, k, m, s)    C( x, m)    P( j, s)    Q( f, j, s)    S( m)    T( f)    J( m)    K( x, z, v, u, j, k, m, s, b)    L( x, v, u, f, j, k, m, s, b)    N( f, j, s)    X( x, z, v, u, f, k, m, s, b)

Proof of Theorem cvmliftlem14
StepHypRef Expression
1 cvmliftlem.1 . . . . 5  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
2 cvmliftlem.b . . . . 5  |-  B  = 
U. C
3 cvmliftlem.x . . . . 5  |-  X  = 
U. J
4 cvmliftlem.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmliftlem.g . . . . 5  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cvmliftlem.p . . . . 5  |-  ( ph  ->  P  e.  B )
7 cvmliftlem.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
8 cvmliftlem.n . . . . 5  |-  ( ph  ->  N  e.  NN )
9 cvmliftlem.t . . . . 5  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
10 cvmliftlem.a . . . . 5  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
11 cvmliftlem.l . . . . 5  |-  L  =  ( topGen `  ran  (,) )
12 cvmliftlem.q . . . . 5  |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
13 cvmliftlem.k . . . . 5  |-  K  = 
U_ k  e.  ( 1 ... N ) ( Q `  k
)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 24970 . . . 4  |-  ( ph  ->  ( K  e.  ( II  Cn  C )  /\  ( F  o.  K )  =  G ) )
1514simpld 446 . . 3  |-  ( ph  ->  K  e.  ( II 
Cn  C ) )
1614simprd 450 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  G )
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem13 24971 . . 3  |-  ( ph  ->  ( K `  0
)  =  P )
18 coeq2 5022 . . . . . 6  |-  ( f  =  K  ->  ( F  o.  f )  =  ( F  o.  K ) )
1918eqeq1d 2443 . . . . 5  |-  ( f  =  K  ->  (
( F  o.  f
)  =  G  <->  ( F  o.  K )  =  G ) )
20 fveq1 5718 . . . . . 6  |-  ( f  =  K  ->  (
f `  0 )  =  ( K ` 
0 ) )
2120eqeq1d 2443 . . . . 5  |-  ( f  =  K  ->  (
( f `  0
)  =  P  <->  ( K `  0 )  =  P ) )
2219, 21anbi12d 692 . . . 4  |-  ( f  =  K  ->  (
( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P )  <->  ( ( F  o.  K )  =  G  /\  ( K `
 0 )  =  P ) ) )
2322rspcev 3044 . . 3  |-  ( ( K  e.  ( II 
Cn  C )  /\  ( ( F  o.  K )  =  G  /\  ( K ` 
0 )  =  P ) )  ->  E. f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )
2415, 16, 17, 23syl12anc 1182 . 2  |-  ( ph  ->  E. f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
25 iiuni 18899 . . 3  |-  ( 0 [,] 1 )  = 
U. II
26 iicon 18905 . . . 4  |-  II  e.  Con
2726a1i 11 . . 3  |-  ( ph  ->  II  e.  Con )
28 iinllycon 24929 . . . 4  |-  II  e. 𝑛Locally  Con
2928a1i 11 . . 3  |-  ( ph  ->  II  e. 𝑛Locally  Con )
30 0elunit 11004 . . . 4  |-  0  e.  ( 0 [,] 1
)
3130a1i 11 . . 3  |-  ( ph  ->  0  e.  ( 0 [,] 1 ) )
322, 25, 4, 27, 29, 31, 5, 6, 7cvmliftmo 24959 . 2  |-  ( ph  ->  E* f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
33 reu5 2913 . 2  |-  ( E! f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  G  /\  ( f `  0
)  =  P )  <-> 
( E. f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P )  /\  E* f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) ) )
3424, 32, 33sylanbrc 646 1  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   E!wreu 2699   E*wrmo 2700   {crab 2701   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   <.cop 3809   U.cuni 4007   U_ciun 4085    e. cmpt 4258    _I cid 4485    X. cxp 4867   `'ccnv 4868   ran crn 4870    |` cres 4871   "cima 4872    o. ccom 4873   -->wf 5441   ` cfv 5445  (class class class)co 6072    e. cmpt2 6074   1stc1st 6338   2ndc2nd 6339   iota_crio 6533   0cc0 8979   1c1 8980    - cmin 9280    / cdiv 9666   NNcn 9989   (,)cioo 10905   [,]cicc 10908   ...cfz 11032    seq cseq 11311   ↾t crest 13636   topGenctg 13653    Cn ccn 17276   Conccon 17462  𝑛Locally cnlly 17516    Homeo chmeo 17773   IIcii 18893   CovMap ccvm 24930
This theorem is referenced by:  cvmliftlem15  24973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-nei 17150  df-cn 17279  df-cnp 17280  df-con 17463  df-lly 17517  df-nlly 17518  df-tx 17582  df-hmeo 17775  df-xms 18338  df-ms 18339  df-tms 18340  df-ii 18895  df-htpy 18983  df-phtpy 18984  df-phtpc 19005  df-pcon 24896  df-scon 24897  df-cvm 24931
  Copyright terms: Public domain W3C validator