Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Unicode version

Theorem cvmliftlem2 24965
Description: Lemma for cvmlift 24978. 
W  =  [ ( k  -  1 )  /  N ,  k  /  N ] is a subset of  [ 0 ,  1 ] for each  M  e.  ( 1 ... N
). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem1.m  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
cvmliftlem3.3  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
Assertion
Ref Expression
cvmliftlem2  |-  ( (
ph  /\  ps )  ->  W  C_  ( 0 [,] 1 ) )
Distinct variable groups:    v, B    j, k, s, u, v, F    j, M, k, s, u, v    P, k, u, v    C, j, k, s, u, v    ph, j, s    k, N, u, v    S, j, k, s, u, v   
j, X    j, G, k, s, u, v    T, j, k, s, u, v   
j, J, k, s, u, v    k, W
Allowed substitution hints:    ph( v, u, k)    ps( v, u, j, k, s)    B( u, j, k, s)    P( j, s)    L( v, u, j, k, s)    N( j, s)    W( v, u, j, s)    X( v, u, k, s)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
2 0re 9083 . . . 4  |-  0  e.  RR
32a1i 11 . . 3  |-  ( (
ph  /\  ps )  ->  0  e.  RR )
4 1re 9082 . . . 4  |-  1  e.  RR
54a1i 11 . . 3  |-  ( (
ph  /\  ps )  ->  1  e.  RR )
6 cvmliftlem1.m . . . . . . 7  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
7 elfznn 11072 . . . . . . 7  |-  ( M  e.  ( 1 ... N )  ->  M  e.  NN )
86, 7syl 16 . . . . . 6  |-  ( (
ph  /\  ps )  ->  M  e.  NN )
98nnred 10007 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  RR )
10 peano2rem 9359 . . . . 5  |-  ( M  e.  RR  ->  ( M  -  1 )  e.  RR )
119, 10syl 16 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  -  1 )  e.  RR )
12 nnm1nn0 10253 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
138, 12syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  -  1 )  e.  NN0 )
1413nn0ge0d 10269 . . . 4  |-  ( (
ph  /\  ps )  ->  0  <_  ( M  -  1 ) )
15 cvmliftlem.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
1615adantr 452 . . . . 5  |-  ( (
ph  /\  ps )  ->  N  e.  NN )
1716nnred 10007 . . . 4  |-  ( (
ph  /\  ps )  ->  N  e.  RR )
1816nngt0d 10035 . . . 4  |-  ( (
ph  /\  ps )  ->  0  <  N )
19 divge0 9871 . . . 4  |-  ( ( ( ( M  - 
1 )  e.  RR  /\  0  <_  ( M  -  1 ) )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( ( M  -  1 )  /  N ) )
2011, 14, 17, 18, 19syl22anc 1185 . . 3  |-  ( (
ph  /\  ps )  ->  0  <_  ( ( M  -  1 )  /  N ) )
21 elfzle2 11053 . . . . . 6  |-  ( M  e.  ( 1 ... N )  ->  M  <_  N )
226, 21syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  <_  N )
2316nncnd 10008 . . . . . 6  |-  ( (
ph  /\  ps )  ->  N  e.  CC )
2423mulid1d 9097 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( N  x.  1 )  =  N )
2522, 24breqtrrd 4230 . . . 4  |-  ( (
ph  /\  ps )  ->  M  <_  ( N  x.  1 ) )
26 ledivmul 9875 . . . . 5  |-  ( ( M  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( M  /  N )  <_  1  <->  M  <_  ( N  x.  1 ) ) )
279, 5, 17, 18, 26syl112anc 1188 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( M  /  N )  <_  1  <->  M  <_  ( N  x.  1 ) ) )
2825, 27mpbird 224 . . 3  |-  ( (
ph  /\  ps )  ->  ( M  /  N
)  <_  1 )
29 iccss 10970 . . 3  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
( ( M  - 
1 )  /  N
)  /\  ( M  /  N )  <_  1
) )  ->  (
( ( M  - 
1 )  /  N
) [,] ( M  /  N ) ) 
C_  ( 0 [,] 1 ) )
303, 5, 20, 28, 29syl22anc 1185 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) ) 
C_  ( 0 [,] 1 ) )
311, 30syl5eqss 3384 1  |-  ( (
ph  /\  ps )  ->  W  C_  ( 0 [,] 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701    \ cdif 3309    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007   U_ciun 4085   class class class wbr 4204    e. cmpt 4258    X. cxp 4868   `'ccnv 4869   ran crn 4871    |` cres 4872   "cima 4873   -->wf 5442   ` cfv 5446  (class class class)co 6073   1stc1st 6339   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   NN0cn0 10213   (,)cioo 10908   [,]cicc 10911   ...cfz 11035   ↾t crest 13640   topGenctg 13657    Cn ccn 17280    Homeo chmeo 17777   IIcii 18897   CovMap ccvm 24934
This theorem is referenced by:  cvmliftlem3  24966  cvmliftlem6  24969  cvmliftlem8  24971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-icc 10915  df-fz 11036
  Copyright terms: Public domain W3C validator