Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem4 Unicode version

Theorem cvmliftlem4 23834
Description: Lemma for cvmlift 23845. The function  Q will be our lifted path, defined piecewise on each section  [ ( M  -  1 )  /  N ,  M  /  N ] for  M  e.  ( 1 ... N ). For 
M  =  0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping  0 to  P. (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
Assertion
Ref Expression
cvmliftlem4  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    P, b,
k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    L( x, v, u, j, k, m, s, b)    N( j, s)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem4
StepHypRef Expression
1 cvmliftlem.q . . . . 5  |-  Q  =  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
21fveq1i 5542 . . . 4  |-  ( Q `
 0 )  =  (  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  - 
1 )  /  N
) [,] ( m  /  N ) ) 
|->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `
 m ) ) ( x `  (
( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `
 z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 0 )
3 0z 10051 . . . . 5  |-  0  e.  ZZ
4 seq1 11075 . . . . 5  |-  ( 0  e.  ZZ  ->  (  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 0 )  =  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
) )
53, 4ax-mp 8 . . . 4  |-  (  seq  0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] (
m  /  N ) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m )
) ( x `  ( ( m  - 
1 )  /  N
) )  e.  b ) ) `  ( G `  z )
) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ) `
 0 )  =  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
)
62, 5eqtri 2316 . . 3  |-  ( Q `
 0 )  =  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
)
7 fnresi 5377 . . . 4  |-  (  _I  |`  NN )  Fn  NN
8 c0ex 8848 . . . . 5  |-  0  e.  _V
9 snex 4232 . . . . 5  |-  { <. 0 ,  P >. }  e.  _V
108, 9fnsn 5320 . . . 4  |-  { <. 0 ,  { <. 0 ,  P >. } >. }  Fn  { 0 }
11 0nnn 9793 . . . . . 6  |-  -.  0  e.  NN
12 disjsn 3706 . . . . . 6  |-  ( ( NN  i^i  { 0 } )  =  (/)  <->  -.  0  e.  NN )
1311, 12mpbir 200 . . . . 5  |-  ( NN 
i^i  { 0 } )  =  (/)
148snid 3680 . . . . 5  |-  0  e.  { 0 }
1513, 14pm3.2i 441 . . . 4  |-  ( ( NN  i^i  { 0 } )  =  (/)  /\  0  e.  { 0 } )
16 fvun2 5607 . . . 4  |-  ( ( (  _I  |`  NN )  Fn  NN  /\  { <. 0 ,  { <. 0 ,  P >. }
>. }  Fn  { 0 }  /\  ( ( NN  i^i  { 0 } )  =  (/)  /\  0  e.  { 0 } ) )  -> 
( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. }
>. } ) `  0
)  =  ( {
<. 0 ,  { <. 0 ,  P >. }
>. } `  0 ) )
177, 10, 15, 16mp3an 1277 . . 3  |-  ( ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) ` 
0 )  =  ( { <. 0 ,  { <. 0 ,  P >. }
>. } `  0 )
186, 17eqtri 2316 . 2  |-  ( Q `
 0 )  =  ( { <. 0 ,  { <. 0 ,  P >. } >. } `  0
)
198, 9fvsn 5729 . 2  |-  ( {
<. 0 ,  { <. 0 ,  P >. }
>. } `  0 )  =  { <. 0 ,  P >. }
2018, 19eqtri 2316 1  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   <.cop 3656   U.cuni 3843   U_ciun 3921    e. cmpt 4093    _I cid 4320    X. cxp 4703   `'ccnv 4704   ran crn 4706    |` cres 4707   "cima 4708    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   iota_crio 6313   0cc0 8753   1c1 8754    - cmin 9053    / cdiv 9439   NNcn 9762   ZZcz 10040   (,)cioo 10672   [,]cicc 10675   ...cfz 10798    seq cseq 11062   ↾t crest 13341   topGenctg 13358    Cn ccn 16970    Homeo chmeo 17460   IIcii 18395   CovMap ccvm 23801
This theorem is referenced by:  cvmliftlem7  23837  cvmliftlem13  23842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063
  Copyright terms: Public domain W3C validator