Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftphtlem Unicode version

Theorem cvmliftphtlem 24784
Description: Lemma for cvmliftpht 24785. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b  |-  B  = 
U. C
cvmliftpht.m  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.n  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
cvmliftpht.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftpht.p  |-  ( ph  ->  P  e.  B )
cvmliftpht.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftphtlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftphtlem.h  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
cvmliftphtlem.k  |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )
cvmliftphtlem.a  |-  ( ph  ->  A  e.  ( ( II  tX  II )  Cn  C ) )
cvmliftphtlem.c  |-  ( ph  ->  ( F  o.  A
)  =  K )
cvmliftphtlem.0  |-  ( ph  ->  ( 0 A 0 )  =  P )
Assertion
Ref Expression
cvmliftphtlem  |-  ( ph  ->  A  e.  ( M ( PHtpy `  C ) N ) )
Distinct variable groups:    A, f    B, f    f, F    f, J    C, f    f, G   
f, H    P, f
Allowed substitution hints:    ph( f)    K( f)    M( f)    N( f)

Proof of Theorem cvmliftphtlem
Dummy variables  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4  |-  B  = 
U. C
2 cvmliftpht.m . . . 4  |-  M  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
3 cvmliftpht.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmliftphtlem.g . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
5 cvmliftpht.p . . . 4  |-  ( ph  ->  P  e.  B )
6 cvmliftpht.e . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
71, 2, 3, 4, 5, 6cvmliftiota 24768 . . 3  |-  ( ph  ->  ( M  e.  ( II  Cn  C )  /\  ( F  o.  M )  =  G  /\  ( M ` 
0 )  =  P ) )
87simp1d 969 . 2  |-  ( ph  ->  M  e.  ( II 
Cn  C ) )
9 cvmliftpht.n . . . 4  |-  N  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
10 cvmliftphtlem.h . . . 4  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
11 cvmliftphtlem.k . . . . . . 7  |-  ( ph  ->  K  e.  ( G ( PHtpy `  J ) H ) )
124, 10, 11phtpy01 18882 . . . . . 6  |-  ( ph  ->  ( ( G ` 
0 )  =  ( H `  0 )  /\  ( G ` 
1 )  =  ( H `  1 ) ) )
1312simpld 446 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  ( H `
 0 ) )
146, 13eqtrd 2420 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( H `
 0 ) )
151, 9, 3, 10, 5, 14cvmliftiota 24768 . . 3  |-  ( ph  ->  ( N  e.  ( II  Cn  C )  /\  ( F  o.  N )  =  H  /\  ( N ` 
0 )  =  P ) )
1615simp1d 969 . 2  |-  ( ph  ->  N  e.  ( II 
Cn  C ) )
17 cvmliftphtlem.a . 2  |-  ( ph  ->  A  e.  ( ( II  tX  II )  Cn  C ) )
18 iitop 18782 . . . . . . . . . . . . . . . 16  |-  II  e.  Top
19 iiuni 18783 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  = 
U. II
2018, 18, 19, 19txunii 17547 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
2120, 1cnf 17233 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ( II 
tX  II )  Cn  C )  ->  A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
2217, 21syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
23 0elunit 10948 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
24 opelxpi 4851 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  <. s ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
2523, 24mpan2 653 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. s ,  0 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
26 fvco3 5740 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. s ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. s ,  0 >. )  =  ( F `  ( A `  <. s ,  0 >. )
) )
2722, 25, 26syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  0 >. )  =  ( F `  ( A `
 <. s ,  0
>. ) ) )
28 cvmliftphtlem.c . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  o.  A
)  =  K )
2928adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F  o.  A )  =  K )
3029fveq1d 5671 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  0 >. )  =  ( K `  <. s ,  0 >. )
)
3127, 30eqtr3d 2422 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. s ,  0
>. ) )  =  ( K `  <. s ,  0 >. )
)
32 df-ov 6024 . . . . . . . . . . . 12  |-  ( s A 0 )  =  ( A `  <. s ,  0 >. )
3332fveq2i 5672 . . . . . . . . . . 11  |-  ( F `
 ( s A 0 ) )  =  ( F `  ( A `  <. s ,  0 >. ) )
34 df-ov 6024 . . . . . . . . . . 11  |-  ( s K 0 )  =  ( K `  <. s ,  0 >. )
3531, 33, 343eqtr4g 2445 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 0 ) )  =  ( s K 0 ) )
36 iitopon 18781 . . . . . . . . . . . . 13  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3736a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
384, 10phtpyhtpy 18879 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G ( PHtpy `  J ) H ) 
C_  ( G ( II Htpy  J ) H ) )
3938, 11sseldd 3293 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ( G ( II Htpy  J ) H ) )
4037, 4, 10, 39htpyi 18871 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s K 0 )  =  ( G `
 s )  /\  ( s K 1 )  =  ( H `
 s ) ) )
4140simpld 446 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s K 0 )  =  ( G `  s ) )
4235, 41eqtrd 2420 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 0 ) )  =  ( G `  s ) )
4342mpteq2dva 4237 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
s A 0 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( G `  s ) ) )
44 fovrn 6156 . . . . . . . . . . 11  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s A 0 )  e.  B )
4523, 44mp3an3 1268 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s A 0 )  e.  B )
4622, 45sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 0 )  e.  B )
47 eqidd 2389 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
48 cvmcn 24729 . . . . . . . . . . . 12  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
493, 48syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( C  Cn  J ) )
50 eqid 2388 . . . . . . . . . . . 12  |-  U. J  =  U. J
511, 50cnf 17233 . . . . . . . . . . 11  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
5249, 51syl 16 . . . . . . . . . 10  |-  ( ph  ->  F : B --> U. J
)
5352feqmptd 5719 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  B  |->  ( F `
 x ) ) )
54 fveq2 5669 . . . . . . . . 9  |-  ( x  =  ( s A 0 )  ->  ( F `  x )  =  ( F `  ( s A 0 ) ) )
5546, 47, 53, 54fmptco 5841 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( s A 0 ) ) ) )
5619, 50cnf 17233 . . . . . . . . . 10  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> U. J
)
574, 56syl 16 . . . . . . . . 9  |-  ( ph  ->  G : ( 0 [,] 1 ) --> U. J )
5857feqmptd 5719 . . . . . . . 8  |-  ( ph  ->  G  =  ( s  e.  ( 0 [,] 1 )  |->  ( G `
 s ) ) )
5943, 55, 583eqtr4d 2430 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  G )
60 cvmliftphtlem.0 . . . . . . 7  |-  ( ph  ->  ( 0 A 0 )  =  P )
6137cnmptid 17615 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  s )  e.  ( II  Cn  II ) )
6223a1i 11 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ( 0 [,] 1 ) )
6337, 37, 62cnmptc 17616 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
6437, 61, 63, 17cnmpt12f 17620 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  e.  ( II  Cn  C ) )
651cvmlift 24766 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  G  e.  ( II  Cn  J ) )  /\  ( P  e.  B  /\  ( F `  P
)  =  ( G `
 0 ) ) )  ->  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )
663, 4, 5, 6, 65syl22anc 1185 . . . . . . . 8  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )
67 coeq2 4972 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( F  o.  f
)  =  ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) ) )
6867eqeq1d 2396 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( F  o.  f )  =  G  <-> 
( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )  =  G ) )
69 fveq1 5668 . . . . . . . . . . . 12  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( f `  0
)  =  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) `  0 ) )
70 oveq1 6028 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s A 0 )  =  ( 0 A 0 ) )
71 eqid 2388 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )
72 ovex 6046 . . . . . . . . . . . . . 14  |-  ( 0 A 0 )  e. 
_V
7370, 71, 72fvmpt 5746 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) `  0
)  =  ( 0 A 0 ) )
7423, 73ax-mp 8 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) `  0 )  =  ( 0 A 0 )
7569, 74syl6eq 2436 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( f `  0
)  =  ( 0 A 0 ) )
7675eqeq1d 2396 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( f ` 
0 )  =  P  <-> 
( 0 A 0 )  =  P ) )
7768, 76anbi12d 692 . . . . . . . . 9  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) )  -> 
( ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P )  <->  ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P ) ) )
7877riota2 6509 . . . . . . . 8  |-  ( ( ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  e.  ( II  Cn  C )  /\  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  G  /\  ( f `
 0 )  =  P ) )  -> 
( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) ) )
7964, 66, 78syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 0 ) ) )  =  G  /\  (
0 A 0 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) ) ) )
8059, 60, 79mpbi2and 888 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  G  /\  ( f ` 
0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
812, 80syl5eq 2432 . . . . 5  |-  ( ph  ->  M  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) ) )
8219, 1cnf 17233 . . . . . . 7  |-  ( M  e.  ( II  Cn  C )  ->  M : ( 0 [,] 1 ) --> B )
838, 82syl 16 . . . . . 6  |-  ( ph  ->  M : ( 0 [,] 1 ) --> B )
8483feqmptd 5719 . . . . 5  |-  ( ph  ->  M  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 s ) ) )
8581, 84eqtr3d 2422 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  s ) ) )
86 mpteqb 5759 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( s A 0 )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  s ) )  <->  A. s  e.  ( 0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) ) )
87 ovex 6046 . . . . . 6  |-  ( s A 0 )  e. 
_V
8887a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
s A 0 )  e.  _V )
8986, 88mprg 2719 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 0 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 s ) )  <->  A. s  e.  (
0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) )
9085, 89sylib 189 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( s A 0 )  =  ( M `
 s ) )
9190r19.21bi 2748 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 0 )  =  ( M `  s ) )
92 1elunit 10949 . . . . . . . . . . . . . 14  |-  1  e.  ( 0 [,] 1
)
93 opelxpi 4851 . . . . . . . . . . . . . 14  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  <. s ,  1
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
9492, 93mpan2 653 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. s ,  1 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
95 fvco3 5740 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. s ,  1
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. s ,  1 >. )  =  ( F `  ( A `  <. s ,  1 >. )
) )
9622, 94, 95syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  1 >. )  =  ( F `  ( A `
 <. s ,  1
>. ) ) )
9729fveq1d 5671 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. s ,  1 >. )  =  ( K `  <. s ,  1 >. )
)
9896, 97eqtr3d 2422 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. s ,  1
>. ) )  =  ( K `  <. s ,  1 >. )
)
99 df-ov 6024 . . . . . . . . . . . 12  |-  ( s A 1 )  =  ( A `  <. s ,  1 >. )
10099fveq2i 5672 . . . . . . . . . . 11  |-  ( F `
 ( s A 1 ) )  =  ( F `  ( A `  <. s ,  1 >. ) )
101 df-ov 6024 . . . . . . . . . . 11  |-  ( s K 1 )  =  ( K `  <. s ,  1 >. )
10298, 100, 1013eqtr4g 2445 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 1 ) )  =  ( s K 1 ) )
10340simprd 450 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s K 1 )  =  ( H `  s ) )
104102, 103eqtrd 2420 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( s A 1 ) )  =  ( H `  s ) )
105104mpteq2dva 4237 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
s A 1 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( H `  s ) ) )
106 fovrn 6156 . . . . . . . . . . 11  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s A 1 )  e.  B )
10792, 106mp3an3 1268 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s A 1 )  e.  B )
10822, 107sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 1 )  e.  B )
109 eqidd 2389 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
110 fveq2 5669 . . . . . . . . 9  |-  ( x  =  ( s A 1 )  ->  ( F `  x )  =  ( F `  ( s A 1 ) ) )
111108, 109, 53, 110fmptco 5841 . . . . . . . 8  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( s A 1 ) ) ) )
11219, 50cnf 17233 . . . . . . . . . 10  |-  ( H  e.  ( II  Cn  J )  ->  H : ( 0 [,] 1 ) --> U. J
)
11310, 112syl 16 . . . . . . . . 9  |-  ( ph  ->  H : ( 0 [,] 1 ) --> U. J )
114113feqmptd 5719 . . . . . . . 8  |-  ( ph  ->  H  =  ( s  e.  ( 0 [,] 1 )  |->  ( H `
 s ) ) )
115105, 111, 1143eqtr4d 2430 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  H )
116 iicon 18789 . . . . . . . . . . . . 13  |-  II  e.  Con
117116a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e.  Con )
118 iinllycon 24721 . . . . . . . . . . . . 13  |-  II  e. 𝑛Locally  Con
119118a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  II  e. 𝑛Locally  Con )
12037, 63, 61, 17cnmpt12f 17620 . . . . . . . . . . . 12  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  e.  ( II  Cn  C ) )
121 cvmtop1 24727 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
1223, 121syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Top )
1231toptopon 16922 . . . . . . . . . . . . . 14  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
124122, 123sylib 189 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  (TopOn `  B ) )
125 ffvelrn 5808 . . . . . . . . . . . . . 14  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  0  e.  ( 0 [,] 1 ) )  ->  ( M `  0 )  e.  B )
12683, 23, 125sylancl 644 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M `  0
)  e.  B )
127 cnconst2 17270 . . . . . . . . . . . . 13  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  ( M `  0
)  e.  B )  ->  ( ( 0 [,] 1 )  X. 
{ ( M ` 
0 ) } )  e.  ( II  Cn  C ) )
12837, 124, 126, 127syl3anc 1184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( M `  0
) } )  e.  ( II  Cn  C
) )
1294, 10, 11phtpyi 18881 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 K s )  =  ( G `
 0 )  /\  ( 1 K s )  =  ( G `
 1 ) ) )
130129simpld 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 K s )  =  ( G ` 
0 ) )
131 opelxpi 4851 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
13223, 131mpan 652 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  ( 0 [,] 1 )  ->  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
133 fvco3 5740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. 0 ,  s >. )  =  ( F `  ( A `  <. 0 ,  s >. )
) )
13422, 132, 133syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 0 ,  s >. )  =  ( F `  ( A `
 <. 0 ,  s
>. ) ) )
13529fveq1d 5671 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 0 ,  s >. )  =  ( K `  <. 0 ,  s >. )
)
136134, 135eqtr3d 2422 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. 0 ,  s
>. ) )  =  ( K `  <. 0 ,  s >. )
)
137 df-ov 6024 . . . . . . . . . . . . . . . . . 18  |-  ( 0 A s )  =  ( A `  <. 0 ,  s >. )
138137fveq2i 5672 . . . . . . . . . . . . . . . . 17  |-  ( F `
 ( 0 A s ) )  =  ( F `  ( A `  <. 0 ,  s >. ) )
139 df-ov 6024 . . . . . . . . . . . . . . . . 17  |-  ( 0 K s )  =  ( K `  <. 0 ,  s >. )
140136, 138, 1393eqtr4g 2445 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 0 A s ) )  =  ( 0 K s ) )
1417simp3d 971 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( M `  0
)  =  P )
142141adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( M `  0 )  =  P )
143142fveq2d 5673 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( M `  0 ) )  =  ( F `  P ) )
1446adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  P )  =  ( G ` 
0 ) )
145143, 144eqtrd 2420 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( M `  0 ) )  =  ( G ` 
0 ) )
146130, 140, 1453eqtr4d 2430 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 0 A s ) )  =  ( F `  ( M `  0 ) ) )
147146mpteq2dva 4237 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
0 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( M `
 0 ) ) ) )
148 fconstmpt 4862 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  { ( F `
 ( M ` 
0 ) ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `
 ( M ` 
0 ) ) )
149147, 148syl6eqr 2438 . . . . . . . . . . . . 13  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
0 A s ) ) )  =  ( ( 0 [,] 1
)  X.  { ( F `  ( M `
 0 ) ) } ) )
150 fovrn 6156 . . . . . . . . . . . . . . . 16  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 A s )  e.  B )
15123, 150mp3an2 1267 . . . . . . . . . . . . . . 15  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 A s )  e.  B )
15222, 151sylan 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 A s )  e.  B )
153 eqidd 2389 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )
154 fveq2 5669 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0 A s )  ->  ( F `  x )  =  ( F `  ( 0 A s ) ) )
155152, 153, 53, 154fmptco 5841 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( 0 A s ) ) ) )
156 ffn 5532 . . . . . . . . . . . . . . 15  |-  ( F : B --> U. J  ->  F  Fn  B )
15752, 156syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  Fn  B )
158 fcoconst 5845 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  B  /\  ( M `  0 )  e.  B )  -> 
( F  o.  (
( 0 [,] 1
)  X.  { ( M `  0 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  0 )
) } ) )
159157, 126, 158syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { ( M `  0 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  0 )
) } ) )
160149, 155, 1593eqtr4d 2430 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { ( M `
 0 ) } ) ) )
16160, 141eqtr4d 2423 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0 A 0 )  =  ( M `
 0 ) )
162 oveq2 6029 . . . . . . . . . . . . . . 15  |-  ( s  =  0  ->  (
0 A s )  =  ( 0 A 0 ) )
163 eqid 2388 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( 0 A s ) )
164162, 163, 72fvmpt 5746 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) ) `  0
)  =  ( 0 A 0 ) )
16523, 164ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) ) `  0 )  =  ( 0 A 0 )
166 fvex 5683 . . . . . . . . . . . . . . 15  |-  ( M `
 0 )  e. 
_V
167166fvconst2 5887 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( M `  0
) } ) ` 
0 )  =  ( M `  0 ) )
16823, 167ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( ( 0 [,] 1
)  X.  { ( M `  0 ) } ) `  0
)  =  ( M `
 0 )
169161, 165, 1683eqtr4g 2445 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( s  e.  ( 0 [,] 1
)  |->  ( 0 A s ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( M `  0
) } ) ` 
0 ) )
1701, 19, 3, 117, 119, 62, 120, 128, 160, 169cvmliftmoi 24750 . . . . . . . . . . 11  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( ( 0 [,] 1
)  X.  { ( M `  0 ) } ) )
171 fconstmpt 4862 . . . . . . . . . . 11  |-  ( ( 0 [,] 1 )  X.  { ( M `
 0 ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 0 ) )
172170, 171syl6eq 2436 . . . . . . . . . 10  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  0 ) ) )
173 mpteqb 5759 . . . . . . . . . . 11  |-  ( A. s  e.  ( 0 [,] 1 ) ( 0 A s )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  0 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) ) )
174 ovex 6046 . . . . . . . . . . . 12  |-  ( 0 A s )  e. 
_V
175174a1i 11 . . . . . . . . . . 11  |-  ( s  e.  ( 0 [,] 1 )  ->  (
0 A s )  e.  _V )
176173, 175mprg 2719 . . . . . . . . . 10  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 0 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 0 ) )  <->  A. s  e.  (
0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) )
177172, 176sylib 189 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( 0 A s )  =  ( M `
 0 ) )
178 oveq2 6029 . . . . . . . . . . 11  |-  ( s  =  1  ->  (
0 A s )  =  ( 0 A 1 ) )
179178eqeq1d 2396 . . . . . . . . . 10  |-  ( s  =  1  ->  (
( 0 A s )  =  ( M `
 0 )  <->  ( 0 A 1 )  =  ( M `  0
) ) )
180179rspcv 2992 . . . . . . . . 9  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( A. s  e.  (
0 [,] 1 ) ( 0 A s )  =  ( M `
 0 )  -> 
( 0 A 1 )  =  ( M `
 0 ) ) )
18192, 177, 180mpsyl 61 . . . . . . . 8  |-  ( ph  ->  ( 0 A 1 )  =  ( M `
 0 ) )
182181, 141eqtrd 2420 . . . . . . 7  |-  ( ph  ->  ( 0 A 1 )  =  P )
18392a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ( 0 [,] 1 ) )
18437, 37, 183cnmptc 17616 . . . . . . . . 9  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  1 )  e.  ( II  Cn  II ) )
18537, 61, 184, 17cnmpt12f 17620 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  e.  ( II  Cn  C ) )
1861cvmlift 24766 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  H  e.  ( II  Cn  J ) )  /\  ( P  e.  B  /\  ( F `  P
)  =  ( H `
 0 ) ) )  ->  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P ) )
1873, 10, 5, 14, 186syl22anc 1185 . . . . . . . 8  |-  ( ph  ->  E! f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )
188 coeq2 4972 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( F  o.  f
)  =  ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) ) )
189188eqeq1d 2396 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( F  o.  f )  =  H  <-> 
( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )  =  H ) )
190 fveq1 5668 . . . . . . . . . . . 12  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( f `  0
)  =  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) `  0 ) )
191 oveq1 6028 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s A 1 )  =  ( 0 A 1 ) )
192 eqid 2388 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )
193 ovex 6046 . . . . . . . . . . . . . 14  |-  ( 0 A 1 )  e. 
_V
194191, 192, 193fvmpt 5746 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) `  0
)  =  ( 0 A 1 ) )
19523, 194ax-mp 8 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) `  0 )  =  ( 0 A 1 )
196190, 195syl6eq 2436 . . . . . . . . . . 11  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( f `  0
)  =  ( 0 A 1 ) )
197196eqeq1d 2396 . . . . . . . . . 10  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( f ` 
0 )  =  P  <-> 
( 0 A 1 )  =  P ) )
198189, 197anbi12d 692 . . . . . . . . 9  |-  ( f  =  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) )  -> 
( ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P )  <->  ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P ) ) )
199198riota2 6509 . . . . . . . 8  |-  ( ( ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  e.  ( II  Cn  C )  /\  E! f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  H  /\  ( f `
 0 )  =  P ) )  -> 
( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) ) )
200185, 187, 199syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( ( F  o.  ( s  e.  ( 0 [,] 1
)  |->  ( s A 1 ) ) )  =  H  /\  (
0 A 1 )  =  P )  <->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  (
f `  0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) ) ) )
201115, 182, 200mpbi2and 888 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  H  /\  ( f ` 
0 )  =  P ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
2029, 201syl5eq 2432 . . . . 5  |-  ( ph  ->  N  =  ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) ) )
20319, 1cnf 17233 . . . . . . 7  |-  ( N  e.  ( II  Cn  C )  ->  N : ( 0 [,] 1 ) --> B )
20416, 203syl 16 . . . . . 6  |-  ( ph  ->  N : ( 0 [,] 1 ) --> B )
205204feqmptd 5719 . . . . 5  |-  ( ph  ->  N  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `
 s ) ) )
206202, 205eqtr3d 2422 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `  s ) ) )
207 mpteqb 5759 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( s A 1 )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `  s ) )  <->  A. s  e.  ( 0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) ) )
208 ovex 6046 . . . . . 6  |-  ( s A 1 )  e. 
_V
209208a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
s A 1 )  e.  _V )
210207, 209mprg 2719 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( s A 1 ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( N `
 s ) )  <->  A. s  e.  (
0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) )
211206, 210sylib 189 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( s A 1 )  =  ( N `
 s ) )
212211r19.21bi 2748 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s A 1 )  =  ( N `  s ) )
213177r19.21bi 2748 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 A s )  =  ( M ` 
0 ) )
21437, 184, 61, 17cnmpt12f 17620 . . . . . 6  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  e.  ( II  Cn  C ) )
215 ffvelrn 5808 . . . . . . . 8  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( M `  1 )  e.  B )
21683, 92, 215sylancl 644 . . . . . . 7  |-  ( ph  ->  ( M `  1
)  e.  B )
217 cnconst2 17270 . . . . . . 7  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  C  e.  (TopOn `  B )  /\  ( M `  1
)  e.  B )  ->  ( ( 0 [,] 1 )  X. 
{ ( M ` 
1 ) } )  e.  ( II  Cn  C ) )
21837, 124, 216, 217syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( M `  1
) } )  e.  ( II  Cn  C
) )
219 opelxpi 4851 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
22092, 219mpan 652 . . . . . . . . . . . . 13  |-  ( s  e.  ( 0 [,] 1 )  ->  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
221 fvco3 5740 . . . . . . . . . . . . 13  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  A ) `  <. 1 ,  s >. )  =  ( F `  ( A `  <. 1 ,  s >. )
) )
22222, 220, 221syl2an 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 1 ,  s >. )  =  ( F `  ( A `
 <. 1 ,  s
>. ) ) )
22329fveq1d 5671 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  A
) `  <. 1 ,  s >. )  =  ( K `  <. 1 ,  s >. )
)
224222, 223eqtr3d 2422 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( A `  <. 1 ,  s
>. ) )  =  ( K `  <. 1 ,  s >. )
)
225 df-ov 6024 . . . . . . . . . . . 12  |-  ( 1 A s )  =  ( A `  <. 1 ,  s >. )
226225fveq2i 5672 . . . . . . . . . . 11  |-  ( F `
 ( 1 A s ) )  =  ( F `  ( A `  <. 1 ,  s >. ) )
227 df-ov 6024 . . . . . . . . . . 11  |-  ( 1 K s )  =  ( K `  <. 1 ,  s >. )
228224, 226, 2273eqtr4g 2445 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 1 A s ) )  =  ( 1 K s ) )
229129simprd 450 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 K s )  =  ( G ` 
1 ) )
2307simp2d 970 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  o.  M
)  =  G )
231230adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F  o.  M )  =  G )
232231fveq1d 5671 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  M
) `  1 )  =  ( G ` 
1 ) )
23383adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  M : ( 0 [,] 1 ) --> B )
234 fvco3 5740 . . . . . . . . . . . 12  |-  ( ( M : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  M ) `  1 )  =  ( F `  ( M `  1 )
) )
235233, 92, 234sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  M
) `  1 )  =  ( F `  ( M `  1 ) ) )
236232, 235eqtr3d 2422 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  1 )  =  ( F `  ( M `  1 ) ) )
237228, 229, 2363eqtrd 2424 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( 1 A s ) )  =  ( F `  ( M `  1 ) ) )
238237mpteq2dva 4237 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( M `
 1 ) ) ) )
239 fconstmpt 4862 . . . . . . . 8  |-  ( ( 0 [,] 1 )  X.  { ( F `
 ( M ` 
1 ) ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `
 ( M ` 
1 ) ) )
240238, 239syl6eqr 2438 . . . . . . 7  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1 A s ) ) )  =  ( ( 0 [,] 1
)  X.  { ( F `  ( M `
 1 ) ) } ) )
241 fovrn 6156 . . . . . . . . . 10  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 A s )  e.  B )
24292, 241mp3an2 1267 . . . . . . . . 9  |-  ( ( A : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 A s )  e.  B )
24322, 242sylan 458 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 A s )  e.  B )
244 eqidd 2389 . . . . . . . 8  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )
245 fveq2 5669 . . . . . . . 8  |-  ( x  =  ( 1 A s )  ->  ( F `  x )  =  ( F `  ( 1 A s ) ) )
246243, 244, 53, 245fmptco 5841 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( F `  ( 1 A s ) ) ) )
247 fcoconst 5845 . . . . . . . 8  |-  ( ( F  Fn  B  /\  ( M `  1 )  e.  B )  -> 
( F  o.  (
( 0 [,] 1
)  X.  { ( M `  1 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  1 )
) } ) )
248157, 216, 247syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( F  o.  (
( 0 [,] 1
)  X.  { ( M `  1 ) } ) )  =  ( ( 0 [,] 1 )  X.  {
( F `  ( M `  1 )
) } ) )
249240, 246, 2483eqtr4d 2430 . . . . . 6  |-  ( ph  ->  ( F  o.  (
s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) )  =  ( F  o.  ( ( 0 [,] 1 )  X.  { ( M `
 1 ) } ) ) )
250 oveq1 6028 . . . . . . . . . 10  |-  ( s  =  1  ->  (
s A 0 )  =  ( 1 A 0 ) )
251 fveq2 5669 . . . . . . . . . 10  |-  ( s  =  1  ->  ( M `  s )  =  ( M ` 
1 ) )
252250, 251eqeq12d 2402 . . . . . . . . 9  |-  ( s  =  1  ->  (
( s A 0 )  =  ( M `
 s )  <->  ( 1 A 0 )  =  ( M `  1
) ) )
253252rspcv 2992 . . . . . . . 8  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( A. s  e.  (
0 [,] 1 ) ( s A 0 )  =  ( M `
 s )  -> 
( 1 A 0 )  =  ( M `
 1 ) ) )
25492, 90, 253mpsyl 61 . . . . . . 7  |-  ( ph  ->  ( 1 A 0 )  =  ( M `
 1 ) )
255 oveq2 6029 . . . . . . . . 9  |-  ( s  =  0  ->  (
1 A s )  =  ( 1 A 0 ) )
256 eqid 2388 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1
)  |->  ( 1 A s ) )
257 ovex 6046 . . . . . . . . 9  |-  ( 1 A 0 )  e. 
_V
258255, 256, 257fvmpt 5746 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) ) `  0
)  =  ( 1 A 0 ) )
25923, 258ax-mp 8 . . . . . . 7  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) ) `  0 )  =  ( 1 A 0 )
260 fvex 5683 . . . . . . . . 9  |-  ( M `
 1 )  e. 
_V
261260fvconst2 5887 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( M `  1
) } ) ` 
0 )  =  ( M `  1 ) )
26223, 261ax-mp 8 . . . . . . 7  |-  ( ( ( 0 [,] 1
)  X.  { ( M `  1 ) } ) `  0
)  =  ( M `
 1 )
263254, 259, 2623eqtr4g 2445 . . . . . 6  |-  ( ph  ->  ( ( s  e.  ( 0 [,] 1
)  |->  ( 1 A s ) ) ` 
0 )  =  ( ( ( 0 [,] 1 )  X.  {
( M `  1
) } ) ` 
0 ) )
2641, 19, 3, 117, 119, 62, 214, 218, 249, 263cvmliftmoi 24750 . . . . 5  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( ( 0 [,] 1
)  X.  { ( M `  1 ) } ) )
265 fconstmpt 4862 . . . . 5  |-  ( ( 0 [,] 1 )  X.  { ( M `
 1 ) } )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 1 ) )
266264, 265syl6eq 2436 . . . 4  |-  ( ph  ->  ( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  1 ) ) )
267 mpteqb 5759 . . . . 5  |-  ( A. s  e.  ( 0 [,] 1 ) ( 1 A s )  e.  _V  ->  (
( s  e.  ( 0 [,] 1 ) 
|->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `  1 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) ) )
268 ovex 6046 . . . . . 6  |-  ( 1 A s )  e. 
_V
269268a1i 11 . . . . 5  |-  ( s  e.  ( 0 [,] 1 )  ->  (
1 A s )  e.  _V )
270267, 269mprg 2719 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  |->  ( 1 A s ) )  =  ( s  e.  ( 0 [,] 1 )  |->  ( M `
 1 ) )  <->  A. s  e.  (
0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) )
271266, 270sylib 189 . . 3  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( 1 A s )  =  ( M `
 1 ) )
272271r19.21bi 2748 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 A s )  =  ( M ` 
1 ) )
2738, 16, 17, 91, 212, 213, 272isphtpy2d 18884 1  |-  ( ph  ->  A  e.  ( M ( PHtpy `  C ) N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   E!wreu 2652   _Vcvv 2900   {csn 3758   <.cop 3761   U.cuni 3958    e. cmpt 4208    X. cxp 4817    o. ccom 4823    Fn wfn 5390   -->wf 5391   ` cfv 5395  (class class class)co 6021   iota_crio 6479   0cc0 8924   1c1 8925   [,]cicc 10852   Topctop 16882  TopOnctopon 16883    Cn ccn 17211   Conccon 17396  𝑛Locally cnlly 17450    tX ctx 17514   IIcii 18777   Htpy chtpy 18864   PHtpycphtpy 18865   CovMap ccvm 24722
This theorem is referenced by:  cvmliftpht  24785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-ec 6844  df-map 6957  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-sum 12408  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-cn 17214  df-cnp 17215  df-cmp 17373  df-con 17397  df-lly 17451  df-nlly 17452  df-tx 17516  df-hmeo 17709  df-xms 18260  df-ms 18261  df-tms 18262  df-ii 18779  df-htpy 18867  df-phtpy 18868  df-phtpc 18889  df-pcon 24688  df-scon 24689  df-cvm 24723
  Copyright terms: Public domain W3C validator