Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsiota Unicode version

Theorem cvmsiota 23808
Description: Identify the unique element of  T containing  A. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmseu.1  |-  B  = 
U. C
cvmsiota.2  |-  W  =  ( iota_ x  e.  T A  e.  x )
Assertion
Ref Expression
cvmsiota  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  -> 
( W  e.  T  /\  A  e.  W
) )
Distinct variable groups:    k, s, u, v, x, C    k, F, s, u, v, x   
k, J, s, u, v, x    x, S    U, k, s, u, v, x    T, s, u, v, x    v, W    u, A, v, x    v, B, x
Allowed substitution hints:    A( k, s)    B( u, k, s)    S( v, u, k, s)    T( k)    W( x, u, k, s)

Proof of Theorem cvmsiota
StepHypRef Expression
1 cvmsiota.2 . . 3  |-  W  =  ( iota_ x  e.  T A  e.  x )
2 cvmcov.1 . . . . 5  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
3 cvmseu.1 . . . . 5  |-  B  = 
U. C
42, 3cvmseu 23807 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  E! x  e.  T  A  e.  x )
5 riotacl2 6318 . . . 4  |-  ( E! x  e.  T  A  e.  x  ->  ( iota_ x  e.  T A  e.  x )  e.  {
x  e.  T  |  A  e.  x }
)
64, 5syl 15 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  -> 
( iota_ x  e.  T A  e.  x )  e.  { x  e.  T  |  A  e.  x } )
71, 6syl5eqel 2367 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  ->  W  e.  { x  e.  T  |  A  e.  x } )
8 eleq2 2344 . . 3  |-  ( v  =  W  ->  ( A  e.  v  <->  A  e.  W ) )
9 eleq2 2344 . . . 4  |-  ( x  =  v  ->  ( A  e.  x  <->  A  e.  v ) )
109cbvrabv 2787 . . 3  |-  { x  e.  T  |  A  e.  x }  =  {
v  e.  T  |  A  e.  v }
118, 10elrab2 2925 . 2  |-  ( W  e.  { x  e.  T  |  A  e.  x }  <->  ( W  e.  T  /\  A  e.  W ) )
127, 11sylib 188 1  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  U )  /\  A  e.  B  /\  ( F `  A )  e.  U ) )  -> 
( W  e.  T  /\  A  e.  W
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E!wreu 2545   {crab 2547    \ cdif 3149    i^i cin 3151   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827    e. cmpt 4077   `'ccnv 4688    |` cres 4691   "cima 4692   ` cfv 5255  (class class class)co 5858   iota_crio 6297   ↾t crest 13325    Homeo chmeo 17444   CovMap ccvm 23786
This theorem is referenced by:  cvmopnlem  23809  cvmliftmolem2  23813  cvmliftlem6  23821  cvmliftlem8  23823  cvmliftlem9  23824  cvmlift2lem9  23842  cvmlift3lem6  23855  cvmlift3lem7  23856
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-map 6774  df-top 16636  df-topon 16639  df-cn 16957  df-cvm 23787
  Copyright terms: Public domain W3C validator