Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsrcl Structured version   Unicode version

Theorem cvmsrcl 24943
Description: Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsrcl  |-  ( T  e.  ( S `  U )  ->  U  e.  J )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    T, s, u, v
Allowed substitution hints:    S( v, u, k, s)    T( k)

Proof of Theorem cvmsrcl
StepHypRef Expression
1 cvmcov.1 . . 3  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
21dmmptss 5358 . 2  |-  dom  S  C_  J
3 elfvdm 5749 . 2  |-  ( T  e.  ( S `  U )  ->  U  e.  dom  S )
42, 3sseldi 3338 1  |-  ( T  e.  ( S `  U )  ->  U  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701    \ cdif 3309    i^i cin 3311   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007    e. cmpt 4258   `'ccnv 4869   dom cdm 4870    |` cres 4872   "cima 4873   ` cfv 5446  (class class class)co 6073   ↾t crest 13640    Homeo chmeo 17777
This theorem is referenced by:  cvmsi  24944  cvmsf1o  24951  cvmsss2  24953  cvmopnlem  24957  cvmliftlem8  24971  cvmlift2lem9  24990  cvmlift2lem10  24991  cvmlift3lem6  25003  cvmlift3lem8  25005
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-xp 4876  df-rel 4877  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454
  Copyright terms: Public domain W3C validator