Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmtop1 Structured version   Unicode version

Theorem cvmtop1 24949
Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cvmtop1  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )

Proof of Theorem cvmtop1
StepHypRef Expression
1 n0i 3635 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  -.  ( C CovMap  J )  =  (/) )
2 fncvm 24946 . . . . 5  |- CovMap  Fn  ( Top  X.  Top )
3 fndm 5546 . . . . 5  |-  ( CovMap  Fn  ( Top  X.  Top )  ->  dom CovMap  =  ( Top  X. 
Top ) )
42, 3ax-mp 8 . . . 4  |-  dom CovMap  =  ( Top  X.  Top )
54ndmov 6233 . . 3  |-  ( -.  ( C  e.  Top  /\  J  e.  Top )  ->  ( C CovMap  J )  =  (/) )
61, 5nsyl2 122 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  ( C  e.  Top  /\  J  e. 
Top ) )
76simpld 447 1  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   (/)c0 3630    X. cxp 4878   dom cdm 4880    Fn wfn 5451  (class class class)co 6083   Topctop 16960   CovMap ccvm 24944
This theorem is referenced by:  cvmsf1o  24961  cvmscld  24962  cvmsss2  24963  cvmopnlem  24967  cvmliftmolem1  24970  cvmliftlem8  24981  cvmlift2lem9a  24992  cvmlift2lem9  25000  cvmlift2lem11  25002  cvmlift2lem12  25003  cvmliftphtlem  25006  cvmlift3lem6  25013  cvmlift3lem8  25015  cvmlift3lem9  25016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-cvm 24945
  Copyright terms: Public domain W3C validator