HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvpss Structured version   Unicode version

Theorem cvpss 23780
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvpss  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  ->  A  C.  B ) )

Proof of Theorem cvpss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cvbr 23777 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
2 simpl 444 . 2  |-  ( ( A  C.  B  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B ) )  ->  A  C.  B
)
31, 2syl6bi 220 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  ->  A  C.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    e. wcel 1725   E.wrex 2698    C. wpss 3313   class class class wbr 4204   CHcch 22424    <oH ccv 22459
This theorem is referenced by:  cvnsym  23785  cvntr  23787  atcveq0  23843  chcv1  23850  cvati  23861  cvbr4i  23862  cvexchlem  23863  atexch  23876  atcvat2i  23882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-cv 23774
  Copyright terms: Public domain W3C validator