Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat Unicode version

Theorem cvrat 29537
Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. (atcvati 23738 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b  |-  B  =  ( Base `  K
)
cvrat.s  |-  .<  =  ( lt `  K )
cvrat.j  |-  .\/  =  ( join `  K )
cvrat.z  |-  .0.  =  ( 0. `  K )
cvrat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrat  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  ->  X  e.  A )
)

Proof of Theorem cvrat
StepHypRef Expression
1 cvrat.b . . . 4  |-  B  =  ( Base `  K
)
2 cvrat.s . . . 4  |-  .<  =  ( lt `  K )
3 cvrat.j . . . 4  |-  .\/  =  ( join `  K )
4 cvrat.z . . . 4  |-  .0.  =  ( 0. `  K )
5 cvrat.a . . . 4  |-  A  =  ( Atoms `  K )
61, 2, 3, 4, 5cvratlem 29536 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  -> 
( -.  P ( le `  K ) X  ->  X  e.  A ) )
7 hllat 29479 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
87adantr 452 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
9 simpr2 964 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
101, 5atbase 29405 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  B )
119, 10syl 16 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
12 simpr3 965 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
131, 5atbase 29405 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  B )
1412, 13syl 16 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
151, 3latjcom 14416 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
168, 11, 14, 15syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
1716breq2d 4166 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  <->  X  .<  ( Q 
.\/  P ) ) )
1817anbi2d 685 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  <->  ( X  =/=  .0.  /\  X  .<  ( Q  .\/  P ) ) ) )
19 simpl 444 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
20 simpr1 963 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
211, 2, 3, 4, 5cvratlem 29536 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( Q  .\/  P
) ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) )
2221ex 424 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( Q  .\/  P ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) ) )
2319, 20, 12, 9, 22syl13anc 1186 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( Q  .\/  P ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) ) )
2418, 23sylbid 207 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) ) )
2524imp 419 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  -> 
( -.  Q ( le `  K ) X  ->  X  e.  A ) )
26 hlpos 29481 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Poset )
2726adantr 452 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Poset )
281, 3latjcl 14407 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
298, 11, 14, 28syl3anc 1184 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
30 eqid 2388 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
311, 30, 2pltnle 14351 . . . . . . . . 9  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  /\  X  .<  ( P  .\/  Q ) )  ->  -.  ( P  .\/  Q ) ( le `  K
) X )
3231ex 424 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  ->  ( X  .<  ( P  .\/  Q )  ->  -.  ( P  .\/  Q ) ( le `  K ) X ) )
3327, 20, 29, 32syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  ->  -.  ( P  .\/  Q ) ( le `  K ) X ) )
341, 30, 3latjle12 14419 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  Q  e.  B  /\  X  e.  B
) )  ->  (
( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  <->  ( P  .\/  Q ) ( le `  K ) X ) )
358, 11, 14, 20, 34syl13anc 1186 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  <->  ( P  .\/  Q ) ( le `  K ) X ) )
3635biimpd 199 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  ->  ( P  .\/  Q ) ( le
`  K ) X ) )
3733, 36nsyld 134 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  ->  -.  ( P ( le `  K ) X  /\  Q ( le `  K ) X ) ) )
38 ianor 475 . . . . . 6  |-  ( -.  ( P ( le
`  K ) X  /\  Q ( le
`  K ) X )  <->  ( -.  P
( le `  K
) X  \/  -.  Q ( le `  K ) X ) )
3937, 38syl6ib 218 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .<  ( P  .\/  Q )  ->  ( -.  P ( le `  K ) X  \/  -.  Q ( le `  K ) X ) ) )
4039imp 419 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  X  .<  ( P  .\/  Q
) )  ->  ( -.  P ( le `  K ) X  \/  -.  Q ( le `  K ) X ) )
4140adantrl 697 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  -> 
( -.  P ( le `  K ) X  \/  -.  Q
( le `  K
) X ) )
426, 25, 41mpjaod 371 . 2  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( X  =/=  .0.  /\  X  .<  ( P  .\/  Q
) ) )  ->  X  e.  A )
4342ex 424 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  X  .<  ( P  .\/  Q ) )  ->  X  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   Posetcpo 14325   ltcplt 14326   joincjn 14329   0.cp0 14394   Latclat 14402   Atomscatm 29379   HLchlt 29466
This theorem is referenced by:  cvrat2  29544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-poset 14331  df-plt 14343  df-lub 14359  df-glb 14360  df-join 14361  df-meet 14362  df-p0 14396  df-lat 14403  df-clat 14465  df-oposet 29292  df-ol 29294  df-oml 29295  df-covers 29382  df-ats 29383  df-atl 29414  df-cvlat 29438  df-hlat 29467
  Copyright terms: Public domain W3C validator