Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat3 Unicode version

Theorem cvrat3 29631
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 22976 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat3.b  |-  B  =  ( Base `  K
)
cvrat3.l  |-  .<_  =  ( le `  K )
cvrat3.j  |-  .\/  =  ( join `  K )
cvrat3.m  |-  ./\  =  ( meet `  K )
cvrat3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrat3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A
) )

Proof of Theorem cvrat3
StepHypRef Expression
1 cvrat3.b . . . . . . . . . . . 12  |-  B  =  ( Base `  K
)
2 cvrat3.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
3 cvrat3.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
4 eqid 2283 . . . . . . . . . . . 12  |-  (  <o  `  K )  =  ( 
<o  `  K )
5 cvrat3.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
61, 2, 3, 4, 5cvr1 29599 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Q  e.  A )  ->  ( -.  Q  .<_  X  <-> 
X (  <o  `  K
) ( X  .\/  Q ) ) )
763adant3r2 1161 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  <->  X (  <o  `  K ) ( X  .\/  Q ) ) )
87biimpa 470 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  -.  Q  .<_  X )  ->  X (  <o  `  K
) ( X  .\/  Q ) )
98adantrr 697 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) ) )  ->  X (  <o  `  K
) ( X  .\/  Q ) )
10 hllat 29553 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  HL  ->  K  e.  Lat )
1110adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
12 simpr2 962 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
131, 5atbase 29479 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  A  ->  P  e.  B )
1412, 13syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
15 simpr3 963 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
161, 5atbase 29479 . . . . . . . . . . . . . . . . . 18  |-  ( Q  e.  A  ->  Q  e.  B )
1715, 16syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
181, 3latjcom 14165 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
1911, 14, 17, 18syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
2019oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( X  .\/  ( Q 
.\/  P ) ) )
21 simpr1 961 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
221, 3latjass 14201 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Q  e.  B  /\  P  e.  B
) )  ->  (
( X  .\/  Q
)  .\/  P )  =  ( X  .\/  ( Q  .\/  P ) ) )
2311, 21, 17, 14, 22syl13anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  .\/  Q
)  .\/  P )  =  ( X  .\/  ( Q  .\/  P ) ) )
2420, 23eqtr4d 2318 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( ( X  .\/  Q
)  .\/  P )
)
2524adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( ( X  .\/  Q
)  .\/  P )
)
261, 3latjcl 14156 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Q  e.  B )  ->  ( X  .\/  Q
)  e.  B )
2711, 21, 17, 26syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  Q )  e.  B )
281, 2, 3latjlej2 14172 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( X  .\/  Q
)  e.  B  /\  ( X  .\/  Q )  e.  B ) )  ->  ( P  .<_  ( X  .\/  Q )  ->  ( ( X 
.\/  Q )  .\/  P )  .<_  ( ( X  .\/  Q )  .\/  ( X  .\/  Q ) ) ) )
2911, 14, 27, 27, 28syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .<_  ( X  .\/  Q )  ->  ( ( X  .\/  Q )  .\/  P )  .<_  ( ( X  .\/  Q )  .\/  ( X  .\/  Q ) ) ) )
3029imp 418 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X  .\/  Q
)  .\/  P )  .<_  ( ( X  .\/  Q )  .\/  ( X 
.\/  Q ) ) )
3125, 30eqbrtrd 4043 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  .<_  ( ( X  .\/  Q ) 
.\/  ( X  .\/  Q ) ) )
321, 3latjidm 14180 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( X  .\/  Q )  e.  B )  -> 
( ( X  .\/  Q )  .\/  ( X 
.\/  Q ) )  =  ( X  .\/  Q ) )
3311, 27, 32syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  .\/  Q
)  .\/  ( X  .\/  Q ) )  =  ( X  .\/  Q
) )
3433adantr 451 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X  .\/  Q
)  .\/  ( X  .\/  Q ) )  =  ( X  .\/  Q
) )
3531, 34breqtrd 4047 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  .<_  ( X 
.\/  Q ) )
36 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
372, 3, 5hlatlej2 29565 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
3836, 12, 15, 37syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  .<_  ( P  .\/  Q
) )
391, 3latjcl 14156 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
4011, 14, 17, 39syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
411, 2, 3latjlej2 14172 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  X  e.  B )
)  ->  ( Q  .<_  ( P  .\/  Q
)  ->  ( X  .\/  Q )  .<_  ( X 
.\/  ( P  .\/  Q ) ) ) )
4211, 17, 40, 21, 41syl13anc 1184 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q  .<_  ( P  .\/  Q )  ->  ( X  .\/  Q )  .<_  ( X 
.\/  ( P  .\/  Q ) ) ) )
4338, 42mpd 14 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )
4443adantr 451 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )
451, 3latjcl 14156 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X  .\/  ( P  .\/  Q ) )  e.  B )
4611, 21, 40, 45syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  .\/  ( P  .\/  Q ) )  e.  B
)
471, 2latasymb 14160 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  ( X  .\/  ( P 
.\/  Q ) )  e.  B  /\  ( X  .\/  Q )  e.  B )  ->  (
( ( X  .\/  ( P  .\/  Q ) )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )  <->  ( X  .\/  ( P  .\/  Q ) )  =  ( X 
.\/  Q ) ) )
4811, 46, 27, 47syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( X  .\/  ( P  .\/  Q ) )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )  <->  ( X  .\/  ( P  .\/  Q ) )  =  ( X 
.\/  Q ) ) )
4948adantr 451 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( ( X  .\/  ( P  .\/  Q ) )  .<_  ( X  .\/  Q )  /\  ( X  .\/  Q )  .<_  ( X  .\/  ( P 
.\/  Q ) ) )  <->  ( X  .\/  ( P  .\/  Q ) )  =  ( X 
.\/  Q ) ) )
5035, 44, 49mpbi2and 887 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X  .\/  ( P  .\/  Q ) )  =  ( X  .\/  Q ) )
5150breq2d 4035 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) )  <->  X (  <o  `  K
) ( X  .\/  Q ) ) )
5251adantrl 696 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) ) )  -> 
( X (  <o  `  K ) ( X 
.\/  ( P  .\/  Q ) )  <->  X (  <o  `  K ) ( X  .\/  Q ) ) )
539, 52mpbird 223 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) ) )  ->  X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) ) )
5453ex 423 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  X (  <o  `  K ) ( X 
.\/  ( P  .\/  Q ) ) ) )
55 cvrat3.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
561, 3, 55, 4cvrexch 29609 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K
) ( P  .\/  Q )  <->  X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) ) ) )
5736, 21, 40, 56syl3anc 1182 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
)  <->  X (  <o  `  K
) ( X  .\/  ( P  .\/  Q ) ) ) )
5854, 57sylibrd 225 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K
) ( P  .\/  Q ) ) )
5958adantr 451 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =/=  Q )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K
) ( P  .\/  Q ) ) )
601, 55latmcl 14157 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X  ./\  ( P  .\/  Q ) )  e.  B )
6111, 21, 40, 60syl3anc 1182 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  B
)
621, 3, 4, 5cvrat2 29618 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( X  ./\  ( P  .\/  Q ) )  e.  B  /\  P  e.  A  /\  Q  e.  A )  /\  ( P  =/=  Q  /\  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
) ) )  -> 
( X  ./\  ( P  .\/  Q ) )  e.  A )
63623expia 1153 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( X  ./\  ( P  .\/  Q ) )  e.  B  /\  P  e.  A  /\  Q  e.  A )
)  ->  ( ( P  =/=  Q  /\  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K ) ( P 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A ) )
6436, 61, 12, 15, 63syl13anc 1184 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  ( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A
) )
6564expdimp 426 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =/=  Q )  ->  (
( X  ./\  ( P  .\/  Q ) ) (  <o  `  K )
( P  .\/  Q
)  ->  ( X  ./\  ( P  .\/  Q
) )  e.  A
) )
6659, 65syld 40 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =/=  Q )  ->  (
( -.  Q  .<_  X  /\  P  .<_  ( X 
.\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A ) )
6766exp4b 590 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =/=  Q  ->  ( -.  Q  .<_  X  -> 
( P  .<_  ( X 
.\/  Q )  -> 
( X  ./\  ( P  .\/  Q ) )  e.  A ) ) ) )
68673impd 1165 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( X  ./\  ( P  .\/  Q ) )  e.  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151    <o ccvr 29452   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  cvrat4  29632  2atjm  29634  1cvrat  29665  2llnma1b  29975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541
  Copyright terms: Public domain W3C validator