Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval5 Unicode version

Theorem cvrval5 29529
Description: Binary relation expressing  X covers  X  ./\  Y. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cvrval5.b  |-  B  =  ( Base `  K
)
cvrval5.l  |-  .<_  =  ( le `  K )
cvrval5.j  |-  .\/  =  ( join `  K )
cvrval5.m  |-  ./\  =  ( meet `  K )
cvrval5.c  |-  C  =  (  <o  `  K )
cvrval5.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrval5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C X  <->  E. p  e.  A  ( -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
Y ) )  =  X ) ) )
Distinct variable groups:    A, p    B, p    C, p    K, p    .<_ , p    ./\ , p    X, p    Y, p
Allowed substitution hint:    .\/ ( p)

Proof of Theorem cvrval5
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
2 hllat 29478 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
3 cvrval5.b . . . . 5  |-  B  =  ( Base `  K
)
4 cvrval5.m . . . . 5  |-  ./\  =  ( meet `  K )
53, 4latmcl 14407 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
62, 5syl3an1 1217 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
7 simp2 958 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
8 cvrval5.l . . . 4  |-  .<_  =  ( le `  K )
9 cvrval5.j . . . 4  |-  .\/  =  ( join `  K )
10 cvrval5.c . . . 4  |-  C  =  (  <o  `  K )
11 cvrval5.a . . . 4  |-  A  =  ( Atoms `  K )
123, 8, 9, 10, 11cvrval3 29527 . . 3  |-  ( ( K  e.  HL  /\  ( X  ./\  Y )  e.  B  /\  X  e.  B )  ->  (
( X  ./\  Y
) C X  <->  E. p  e.  A  ( -.  p  .<_  ( X  ./\  Y )  /\  ( ( X  ./\  Y )  .\/  p )  =  X ) ) )
131, 6, 7, 12syl3anc 1184 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C X  <->  E. p  e.  A  ( -.  p  .<_  ( X  ./\  Y )  /\  ( ( X  ./\  Y )  .\/  p )  =  X ) ) )
1423ad2ant1 978 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
1514ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  K  e.  Lat )
166ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  ( X  ./\  Y )  e.  B )
173, 11atbase 29404 . . . . . . . . . . . 12  |-  ( p  e.  A  ->  p  e.  B )
1817ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  p  e.  B )
193, 8, 9latlej2 14417 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  p  e.  B )  ->  p  .<_  ( ( X  ./\  Y )  .\/  p ) )
2015, 16, 18, 19syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  p  .<_  ( ( X  ./\  Y )  .\/  p ) )
21 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  (
( X  ./\  Y
)  .\/  p )  =  X )
2220, 21breqtrd 4177 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  p  .<_  X )
2322biantrurd 495 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  (
p  .<_  Y  <->  ( p  .<_  X  /\  p  .<_  Y ) ) )
24 simpll2 997 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  X  e.  B )
25 simpll3 998 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  Y  e.  B )
263, 8, 4latlem12 14434 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( p  .<_  X  /\  p  .<_  Y )  <->  p  .<_  ( X  ./\  Y )
) )
2715, 18, 24, 25, 26syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  (
( p  .<_  X  /\  p  .<_  Y )  <->  p  .<_  ( X  ./\  Y )
) )
2823, 27bitr2d 246 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  (
p  .<_  ( X  ./\  Y )  <->  p  .<_  Y ) )
2928notbid 286 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A )  /\  (
( X  ./\  Y
)  .\/  p )  =  X )  ->  ( -.  p  .<_  ( X 
./\  Y )  <->  -.  p  .<_  Y ) )
3029ex 424 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X  ./\  Y
)  .\/  p )  =  X  ->  ( -.  p  .<_  ( X  ./\ 
Y )  <->  -.  p  .<_  Y ) ) )
3130pm5.32rd 622 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( ( -.  p  .<_  ( X 
./\  Y )  /\  ( ( X  ./\  Y )  .\/  p )  =  X )  <->  ( -.  p  .<_  Y  /\  (
( X  ./\  Y
)  .\/  p )  =  X ) ) )
3214adantr 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  Lat )
336adantr 452 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( X  ./\ 
Y )  e.  B
)
3417adantl 453 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  p  e.  B )
353, 9latjcom 14415 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  p  e.  B )  ->  (
( X  ./\  Y
)  .\/  p )  =  ( p  .\/  ( X  ./\  Y ) ) )
3632, 33, 34, 35syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( ( X  ./\  Y )  .\/  p )  =  ( p  .\/  ( X 
./\  Y ) ) )
3736eqeq1d 2395 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X  ./\  Y
)  .\/  p )  =  X  <->  ( p  .\/  ( X  ./\  Y ) )  =  X ) )
3837anbi2d 685 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( ( -.  p  .<_  Y  /\  ( ( X  ./\  Y )  .\/  p )  =  X )  <->  ( -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
Y ) )  =  X ) ) )
3931, 38bitrd 245 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( ( -.  p  .<_  ( X 
./\  Y )  /\  ( ( X  ./\  Y )  .\/  p )  =  X )  <->  ( -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
Y ) )  =  X ) ) )
4039rexbidva 2666 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( -.  p  .<_  ( X  ./\  Y
)  /\  ( ( X  ./\  Y )  .\/  p )  =  X )  <->  E. p  e.  A  ( -.  p  .<_  Y  /\  ( p  .\/  ( X  ./\  Y ) )  =  X ) ) )
4113, 40bitrd 245 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C X  <->  E. p  e.  A  ( -.  p  .<_  Y  /\  (
p  .\/  ( X  ./\ 
Y ) )  =  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2650   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   Latclat 14401    <o ccvr 29377   Atomscatm 29378   HLchlt 29465
This theorem is referenced by:  lhpmcvr2  30138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466
  Copyright terms: Public domain W3C validator