MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Unicode version

Theorem cxpcn3lem 20636
Description: Lemma for cxpcn3 20637. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d  |-  D  =  ( `' Re " RR+ )
cxpcn3.j  |-  J  =  ( TopOpen ` fld )
cxpcn3.k  |-  K  =  ( Jt  ( 0 [,) 
+oo ) )
cxpcn3.l  |-  L  =  ( Jt  D )
cxpcn3.u  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
cxpcn3.t  |-  T  =  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )
Assertion
Ref Expression
cxpcn3lem  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
Distinct variable groups:    a, b,
d, A    E, a,
b, d    J, d    K, a, b, d    D, a, b, d    L, a, b, d    T, a, b, d
Allowed substitution hints:    U( a, b, d)    J( a, b)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3  |-  T  =  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )
2 cxpcn3.u . . . . 5  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
3 cxpcn3.d . . . . . . . . . . 11  |-  D  =  ( `' Re " RR+ )
43eleq2i 2502 . . . . . . . . . 10  |-  ( A  e.  D  <->  A  e.  ( `' Re " RR+ )
)
5 ref 11922 . . . . . . . . . . 11  |-  Re : CC
--> RR
6 ffn 5594 . . . . . . . . . . 11  |-  ( Re : CC --> RR  ->  Re  Fn  CC )
7 elpreima 5853 . . . . . . . . . . 11  |-  ( Re  Fn  CC  ->  ( A  e.  ( `' Re " RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) ) )
85, 6, 7mp2b 10 . . . . . . . . . 10  |-  ( A  e.  ( `' Re "
RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
94, 8bitri 242 . . . . . . . . 9  |-  ( A  e.  D  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
109simprbi 452 . . . . . . . 8  |-  ( A  e.  D  ->  (
Re `  A )  e.  RR+ )
1110adantr 453 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( Re `  A
)  e.  RR+ )
12 1rp 10621 . . . . . . 7  |-  1  e.  RR+
13 ifcl 3777 . . . . . . 7  |-  ( ( ( Re `  A
)  e.  RR+  /\  1  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1411, 12, 13sylancl 645 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1514rphalfcld 10665 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )  e.  RR+ )
162, 15syl5eqel 2522 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  U  e.  RR+ )
17 simpr 449 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E  e.  RR+ )
1816rpreccld 10663 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR+ )
1918rpred 10653 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR )
2017, 19rpcxpcld 20626 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( E  ^ c 
( 1  /  U
) )  e.  RR+ )
21 ifcl 3777 . . . 4  |-  ( ( U  e.  RR+  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR+ )  ->  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  e.  RR+ )
2216, 20, 21syl2anc 644 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  e.  RR+ )
231, 22syl5eqel 2522 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  T  e.  RR+ )
24 elrege0 11012 . . . 4  |-  ( a  e.  ( 0 [,) 
+oo )  <->  ( a  e.  RR  /\  0  <_ 
a ) )
25 0re 9096 . . . . . . . 8  |-  0  e.  RR
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
0  e.  RR )
27 leloe 9166 . . . . . . 7  |-  ( ( 0  e.  RR  /\  a  e.  RR )  ->  ( 0  <_  a  <->  ( 0  <  a  \/  0  =  a ) ) )
2826, 27sylan 459 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  <->  ( 0  < 
a  \/  0  =  a ) ) )
29 elrp 10619 . . . . . . . . 9  |-  ( a  e.  RR+  <->  ( a  e.  RR  /\  0  < 
a ) )
30 simp2l 984 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR+ )
31 simp2r 985 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  D )
32 cnvimass 5227 . . . . . . . . . . . . . . . . . 18  |-  ( `' Re " RR+ )  C_ 
dom  Re
335fdmi 5599 . . . . . . . . . . . . . . . . . 18  |-  dom  Re  =  CC
3432, 33sseqtri 3382 . . . . . . . . . . . . . . . . 17  |-  ( `' Re " RR+ )  C_  CC
353, 34eqsstri 3380 . . . . . . . . . . . . . . . 16  |-  D  C_  CC
3635sseli 3346 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  b  e.  CC )
3731, 36syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  CC )
38 abscxp 20588 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  CC )  ->  ( abs `  ( a  ^ c  b ) )  =  ( a  ^ c  ( Re `  b ) ) )
3930, 37, 38syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^ c 
b ) )  =  ( a  ^ c 
( Re `  b
) ) )
4037recld 12004 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  b )  e.  RR )
4130, 40rpcxpcld 20626 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  e.  RR+ )
4241rpred 10653 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  e.  RR )
43163ad2ant1 979 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR+ )
4443rpred 10653 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR )
4530, 44rpcxpcld 20626 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  e.  RR+ )
4645rpred 10653 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  e.  RR )
47 simp1r 983 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR+ )
4847rpred 10653 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR )
49 simp1l 982 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  D )
509simplbi 448 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  D  ->  A  e.  CC )
5149, 50syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  CC )
5251recld 12004 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  RR )
5352rehalfcld 10219 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  e.  RR )
54 1re 9095 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
55 min1 10781 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  (
Re `  A )
)
5652, 54, 55sylancl 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  ( Re `  A ) )
57143ad2ant1 979 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR+ )
5857rpred 10653 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR )
59 2re 10074 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR
6059a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  2  e.  RR )
61 2pos 10087 . . . . . . . . . . . . . . . . . . . 20  |-  0  <  2
6261a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  0  <  2 )
63 lediv1 9880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  ( Re `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6458, 52, 60, 62, 63syl112anc 1189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6556, 64mpbid 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) )
662, 65syl5eqbr 4248 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( ( Re `  A
)  /  2 ) )
6752recnd 9119 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  CC )
68672halvesd 10218 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  =  ( Re `  A
) )
6951, 37resubd 12026 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  =  ( ( Re `  A
)  -  ( Re
`  b ) ) )
7051, 37subcld 9416 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( A  -  b )  e.  CC )
7170recld 12004 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  e.  RR )
7270abscld 12243 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  e.  RR )
7370releabsd 12258 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <_  ( abs `  ( A  -  b ) ) )
74 simp3r 987 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  T
)
7574, 1syl6breq 4254 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) ) )
76203ad2ant1 979 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^ c  ( 1  /  U ) )  e.  RR+ )
7776rpred 10653 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^ c  ( 1  /  U ) )  e.  RR )
78 ltmin 10786 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( abs `  ( A  -  b )
)  e.  RR  /\  U  e.  RR  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR )  -> 
( ( abs `  ( A  -  b )
)  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <->  ( ( abs `  ( A  -  b
) )  <  U  /\  ( abs `  ( A  -  b )
)  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
7972, 44, 77, 78syl3anc 1185 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <-> 
( ( abs `  ( A  -  b )
)  <  U  /\  ( abs `  ( A  -  b ) )  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
8075, 79mpbid 203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
U  /\  ( abs `  ( A  -  b
) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
8180simpld 447 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  U
)
8271, 72, 44, 73, 81lelttrd 9233 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  U
)
8371, 44, 53, 82, 66ltletrd 9235 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  (
( Re `  A
)  /  2 ) )
8469, 83eqbrtrrd 4237 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  -  ( Re `  b ) )  < 
( ( Re `  A )  /  2
) )
8552, 40, 53ltsubadd2d 9629 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  -  ( Re
`  b ) )  <  ( ( Re
`  A )  / 
2 )  <->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) ) )
8684, 85mpbid 203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) )
8768, 86eqbrtrd 4235 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) )
8853, 40, 53ltadd1d 9624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  <  ( Re `  b )  <->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) ) )
8987, 88mpbird 225 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  < 
( Re `  b
) )
9044, 53, 40, 66, 89lelttrd 9233 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  ( Re `  b ) )
9130rpred 10653 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR )
9254a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  1  e.  RR )
9330rprege0d 10660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  e.  RR  /\  0  <_ 
a ) )
94 absid 12106 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  RR  /\  0  <_  a )  -> 
( abs `  a
)  =  a )
9593, 94syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  =  a )
96 simp3l 986 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  <  T
)
9795, 96eqbrtrrd 4237 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  T )
9897, 1syl6breq 4254 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) ) )
99 ltmin 10786 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR  /\  U  e.  RR  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR )  -> 
( a  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <->  ( a  <  U  /\  a  < 
( E  ^ c 
( 1  /  U
) ) ) ) )
10091, 44, 77, 99syl3anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <-> 
( a  <  U  /\  a  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
10198, 100mpbid 203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  U  /\  a  < 
( E  ^ c 
( 1  /  U
) ) ) )
102101simpld 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  U )
103 rehalfcl 10199 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
10454, 103mp1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  e.  RR )
105 min2 10782 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  1
)
10652, 54, 105sylancl 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  1 )
107 lediv1 9880 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  1  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
10858, 92, 60, 62, 107syl112anc 1189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
109106, 108mpbid 203 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) )
1102, 109syl5eqbr 4248 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( 1  /  2 ) )
111 halflt1 10194 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  /  2 )  <  1
112111a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  <  1 )
11344, 104, 92, 110, 112lelttrd 9233 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  1 )
11491, 44, 92, 102, 113lttrd 9236 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  1 )
11530, 44, 114, 40cxplt3d 20628 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  <  ( Re `  b
)  <->  ( a  ^ c  ( Re `  b ) )  < 
( a  ^ c  U ) ) )
11690, 115mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  < 
( a  ^ c  U ) )
11743rpcnne0d 10662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  e.  CC  /\  U  =/=  0 ) )
118 recid 9697 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  CC  /\  U  =/=  0 )  -> 
( U  x.  (
1  /  U ) )  =  1 )
119117, 118syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  x.  ( 1  /  U
) )  =  1 )
120119oveq2d 6100 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( U  x.  ( 1  /  U
) ) )  =  ( a  ^ c 
1 ) )
12143rpreccld 10663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  RR+ )
122121rpcnd 10655 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  CC )
12330, 44, 122cxpmuld 20630 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( U  x.  ( 1  /  U
) ) )  =  ( ( a  ^ c  U )  ^ c 
( 1  /  U
) ) )
12430rpcnd 10655 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  CC )
125124cxp1d 20602 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  1 )  =  a )
126120, 123, 1253eqtr3d 2478 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  =  a )
127101simprd 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  ( E  ^ c  ( 1  /  U ) ) )
128126, 127eqbrtrd 4235 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  <  ( E  ^ c  ( 1  /  U ) ) )
12945rprege0d 10660 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  e.  RR  /\  0  <_  ( a  ^ c  U ) ) )
13047rprege0d 10660 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  e.  RR  /\  0  <_  E ) )
131 cxplt2 20594 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  ^ c  U )  e.  RR  /\  0  <_  ( a  ^ c  U )
)  /\  ( E  e.  RR  /\  0  <_  E )  /\  (
1  /  U )  e.  RR+ )  ->  (
( a  ^ c  U )  <  E  <->  ( ( a  ^ c  U )  ^ c 
( 1  /  U
) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
132129, 130, 121, 131syl3anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  <  E  <->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
133128, 132mpbird 225 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  <  E )
13442, 46, 48, 116, 133lttrd 9236 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  < 
E )
13539, 134eqbrtrd 4235 . . . . . . . . . . . 12  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^ c 
b ) )  < 
E )
1361353expia 1156 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D ) )  ->  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
137136anassrs 631 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  /\  b  e.  D )  ->  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
138137ralrimiva 2791 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
13929, 138sylan2br 464 . . . . . . . 8  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR  /\  0  <  a ) )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
140139expr 600 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  < 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
141 elpreima 5853 . . . . . . . . . . . . . . . . . . 19  |-  ( Re  Fn  CC  ->  (
b  e.  ( `' Re " RR+ )  <->  ( b  e.  CC  /\  ( Re `  b )  e.  RR+ ) ) )
1425, 6, 141mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ( `' Re "
RR+ )  <->  ( b  e.  CC  /\  ( Re
`  b )  e.  RR+ ) )
143142simprbi 452 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( `' Re "
RR+ )  ->  (
Re `  b )  e.  RR+ )
144143, 3eleq2s 2530 . . . . . . . . . . . . . . . 16  |-  ( b  e.  D  ->  (
Re `  b )  e.  RR+ )
145144rpne0d 10658 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  (
Re `  b )  =/=  0 )
146 fveq2 5731 . . . . . . . . . . . . . . . . 17  |-  ( b  =  0  ->  (
Re `  b )  =  ( Re ` 
0 ) )
147 re0 11962 . . . . . . . . . . . . . . . . 17  |-  ( Re
`  0 )  =  0
148146, 147syl6eq 2486 . . . . . . . . . . . . . . . 16  |-  ( b  =  0  ->  (
Re `  b )  =  0 )
149148necon3i 2645 . . . . . . . . . . . . . . 15  |-  ( ( Re `  b )  =/=  0  ->  b  =/=  0 )
150145, 149syl 16 . . . . . . . . . . . . . 14  |-  ( b  e.  D  ->  b  =/=  0 )
15136, 1500cxpd 20606 . . . . . . . . . . . . 13  |-  ( b  e.  D  ->  (
0  ^ c  b )  =  0 )
152151adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  ^ c  b )  =  0 )
153152abs00bd 12101 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^ c  b ) )  =  0 )
154 simpllr 737 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  E  e.  RR+ )
155154rpgt0d 10656 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  0  <  E )
156153, 155eqbrtrd 4235 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^ c  b ) )  <  E )
157 oveq1 6091 . . . . . . . . . . . 12  |-  ( 0  =  a  ->  (
0  ^ c  b )  =  ( a  ^ c  b ) )
158157fveq2d 5735 . . . . . . . . . . 11  |-  ( 0  =  a  ->  ( abs `  ( 0  ^ c  b ) )  =  ( abs `  (
a  ^ c  b ) ) )
159158breq1d 4225 . . . . . . . . . 10  |-  ( 0  =  a  ->  (
( abs `  (
0  ^ c  b ) )  <  E  <->  ( abs `  ( a  ^ c  b ) )  <  E ) )
160156, 159syl5ibcom 213 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
161160a1dd 45 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
162161ralrimdva 2798 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  =  a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
163140, 162jaod 371 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( ( 0  <  a  \/  0  =  a )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
16428, 163sylbid 208 . . . . 5  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
165164expimpd 588 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( ( a  e.  RR  /\  0  <_ 
a )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
16624, 165syl5bi 210 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( a  e.  ( 0 [,)  +oo )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
167166ralrimiv 2790 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  A. a  e.  (
0 [,)  +oo ) A. b  e.  D  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
168 breq2 4219 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  a
)  <  d  <->  ( abs `  a )  <  T
) )
169 breq2 4219 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  ( A  -  b )
)  <  d  <->  ( abs `  ( A  -  b
) )  <  T
) )
170168, 169anbi12d 693 . . . . 5  |-  ( d  =  T  ->  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  <->  ( ( abs `  a )  < 
T  /\  ( abs `  ( A  -  b
) )  <  T
) ) )
171170imbi1d 310 . . . 4  |-  ( d  =  T  ->  (
( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
)  <->  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b ) )  < 
T )  ->  ( abs `  ( a  ^ c  b ) )  <  E ) ) )
1721712ralbidv 2749 . . 3  |-  ( d  =  T  ->  ( A. a  e.  (
0 [,)  +oo ) A. b  e.  D  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  -> 
( abs `  (
a  ^ c  b ) )  <  E
)  <->  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
173172rspcev 3054 . 2  |-  ( ( T  e.  RR+  /\  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
17423, 167, 173syl2anc 644 1  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   ifcif 3741   class class class wbr 4215   `'ccnv 4880   dom cdm 4881   "cima 4884    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    +oocpnf 9122    < clt 9125    <_ cle 9126    - cmin 9296    / cdiv 9682   2c2 10054   RR+crp 10617   [,)cico 10923   Recre 11907   abscabs 12044   ↾t crest 13653   TopOpenctopn 13654  ℂfldccnfld 16708    ^ c ccxp 20458
This theorem is referenced by:  cxpcn3  20637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675  df-sin 12677  df-cos 12678  df-pi 12680  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759  df-log 20459  df-cxp 20460
  Copyright terms: Public domain W3C validator