MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Unicode version

Theorem cxpcn3lem 20592
Description: Lemma for cxpcn3 20593. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d  |-  D  =  ( `' Re " RR+ )
cxpcn3.j  |-  J  =  ( TopOpen ` fld )
cxpcn3.k  |-  K  =  ( Jt  ( 0 [,) 
+oo ) )
cxpcn3.l  |-  L  =  ( Jt  D )
cxpcn3.u  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
cxpcn3.t  |-  T  =  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )
Assertion
Ref Expression
cxpcn3lem  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
Distinct variable groups:    a, b,
d, A    E, a,
b, d    J, d    K, a, b, d    D, a, b, d    L, a, b, d    T, a, b, d
Allowed substitution hints:    U( a, b, d)    J( a, b)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3  |-  T  =  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )
2 cxpcn3.u . . . . 5  |-  U  =  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )
3 cxpcn3.d . . . . . . . . . . 11  |-  D  =  ( `' Re " RR+ )
43eleq2i 2476 . . . . . . . . . 10  |-  ( A  e.  D  <->  A  e.  ( `' Re " RR+ )
)
5 ref 11880 . . . . . . . . . . 11  |-  Re : CC
--> RR
6 ffn 5558 . . . . . . . . . . 11  |-  ( Re : CC --> RR  ->  Re  Fn  CC )
7 elpreima 5817 . . . . . . . . . . 11  |-  ( Re  Fn  CC  ->  ( A  e.  ( `' Re " RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) ) )
85, 6, 7mp2b 10 . . . . . . . . . 10  |-  ( A  e.  ( `' Re "
RR+ )  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
94, 8bitri 241 . . . . . . . . 9  |-  ( A  e.  D  <->  ( A  e.  CC  /\  ( Re
`  A )  e.  RR+ ) )
109simprbi 451 . . . . . . . 8  |-  ( A  e.  D  ->  (
Re `  A )  e.  RR+ )
1110adantr 452 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( Re `  A
)  e.  RR+ )
12 1rp 10580 . . . . . . 7  |-  1  e.  RR+
13 ifcl 3743 . . . . . . 7  |-  ( ( ( Re `  A
)  e.  RR+  /\  1  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1411, 12, 13sylancl 644 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  e.  RR+ )
1514rphalfcld 10624 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  / 
2 )  e.  RR+ )
162, 15syl5eqel 2496 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  U  e.  RR+ )
17 simpr 448 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E  e.  RR+ )
1816rpreccld 10622 . . . . . 6  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR+ )
1918rpred 10612 . . . . 5  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( 1  /  U
)  e.  RR )
2017, 19rpcxpcld 20582 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( E  ^ c 
( 1  /  U
) )  e.  RR+ )
21 ifcl 3743 . . . 4  |-  ( ( U  e.  RR+  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR+ )  ->  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  e.  RR+ )
2216, 20, 21syl2anc 643 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  e.  RR+ )
231, 22syl5eqel 2496 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  T  e.  RR+ )
24 elrege0 10971 . . . 4  |-  ( a  e.  ( 0 [,) 
+oo )  <->  ( a  e.  RR  /\  0  <_ 
a ) )
25 0re 9055 . . . . . . . 8  |-  0  e.  RR
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
0  e.  RR )
27 leloe 9125 . . . . . . 7  |-  ( ( 0  e.  RR  /\  a  e.  RR )  ->  ( 0  <_  a  <->  ( 0  <  a  \/  0  =  a ) ) )
2826, 27sylan 458 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  <->  ( 0  < 
a  \/  0  =  a ) ) )
29 elrp 10578 . . . . . . . . 9  |-  ( a  e.  RR+  <->  ( a  e.  RR  /\  0  < 
a ) )
30 simp2l 983 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR+ )
31 simp2r 984 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  D )
32 cnvimass 5191 . . . . . . . . . . . . . . . . . 18  |-  ( `' Re " RR+ )  C_ 
dom  Re
335fdmi 5563 . . . . . . . . . . . . . . . . . 18  |-  dom  Re  =  CC
3432, 33sseqtri 3348 . . . . . . . . . . . . . . . . 17  |-  ( `' Re " RR+ )  C_  CC
353, 34eqsstri 3346 . . . . . . . . . . . . . . . 16  |-  D  C_  CC
3635sseli 3312 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  b  e.  CC )
3731, 36syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  b  e.  CC )
38 abscxp 20544 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  CC )  ->  ( abs `  ( a  ^ c  b ) )  =  ( a  ^ c  ( Re `  b ) ) )
3930, 37, 38syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^ c 
b ) )  =  ( a  ^ c 
( Re `  b
) ) )
4037recld 11962 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  b )  e.  RR )
4130, 40rpcxpcld 20582 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  e.  RR+ )
4241rpred 10612 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  e.  RR )
43163ad2ant1 978 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR+ )
4443rpred 10612 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  e.  RR )
4530, 44rpcxpcld 20582 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  e.  RR+ )
4645rpred 10612 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  e.  RR )
47 simp1r 982 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR+ )
4847rpred 10612 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  E  e.  RR )
49 simp1l 981 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  D )
509simplbi 447 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  D  ->  A  e.  CC )
5149, 50syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  A  e.  CC )
5251recld 11962 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  RR )
5352rehalfcld 10178 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  e.  RR )
54 1re 9054 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
55 min1 10740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  (
Re `  A )
)
5652, 54, 55sylancl 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  ( Re `  A ) )
57143ad2ant1 978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR+ )
5857rpred 10612 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  e.  RR )
59 2re 10033 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR
6059a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  2  e.  RR )
61 2pos 10046 . . . . . . . . . . . . . . . . . . . 20  |-  0  <  2
6261a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  0  <  2 )
63 lediv1 9839 . . . . . . . . . . . . . . . . . . 19  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  ( Re `  A
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6458, 52, 60, 62, 63syl112anc 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  ( Re `  A )  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) ) )
6556, 64mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( ( Re
`  A )  / 
2 ) )
662, 65syl5eqbr 4213 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( ( Re `  A
)  /  2 ) )
6752recnd 9078 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  e.  CC )
68672halvesd 10177 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  =  ( Re `  A
) )
6951, 37resubd 11984 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  =  ( ( Re `  A
)  -  ( Re
`  b ) ) )
7051, 37subcld 9375 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( A  -  b )  e.  CC )
7170recld 11962 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  e.  RR )
7270abscld 12201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  e.  RR )
7370releabsd 12216 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <_  ( abs `  ( A  -  b ) ) )
74 simp3r 986 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  T
)
7574, 1syl6breq 4219 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) ) )
76203ad2ant1 978 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^ c  ( 1  /  U ) )  e.  RR+ )
7776rpred 10612 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  ^ c  ( 1  /  U ) )  e.  RR )
78 ltmin 10745 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( abs `  ( A  -  b )
)  e.  RR  /\  U  e.  RR  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR )  -> 
( ( abs `  ( A  -  b )
)  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <->  ( ( abs `  ( A  -  b
) )  <  U  /\  ( abs `  ( A  -  b )
)  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
7972, 44, 77, 78syl3anc 1184 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <-> 
( ( abs `  ( A  -  b )
)  <  U  /\  ( abs `  ( A  -  b ) )  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
8075, 79mpbid 202 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( ( abs `  ( A  -  b ) )  < 
U  /\  ( abs `  ( A  -  b
) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
8180simpld 446 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( A  -  b
) )  <  U
)
8271, 72, 44, 73, 81lelttrd 9192 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  U
)
8371, 44, 53, 82, 66ltletrd 9194 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  ( A  -  b
) )  <  (
( Re `  A
)  /  2 ) )
8469, 83eqbrtrrd 4202 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  -  ( Re `  b ) )  < 
( ( Re `  A )  /  2
) )
8552, 40, 53ltsubadd2d 9588 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  -  ( Re
`  b ) )  <  ( ( Re
`  A )  / 
2 )  <->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) ) )
8684, 85mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( Re `  A )  <  (
( Re `  b
)  +  ( ( Re `  A )  /  2 ) ) )
8768, 86eqbrtrd 4200 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) )
8853, 40, 53ltadd1d 9583 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
( Re `  A
)  /  2 )  <  ( Re `  b )  <->  ( (
( Re `  A
)  /  2 )  +  ( ( Re
`  A )  / 
2 ) )  < 
( ( Re `  b )  +  ( ( Re `  A
)  /  2 ) ) ) )
8987, 88mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
Re `  A )  /  2 )  < 
( Re `  b
) )
9044, 53, 40, 66, 89lelttrd 9192 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  ( Re `  b ) )
9130rpred 10612 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  RR )
9254a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  1  e.  RR )
9330rprege0d 10619 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  e.  RR  /\  0  <_ 
a ) )
94 absid 12064 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  RR  /\  0  <_  a )  -> 
( abs `  a
)  =  a )
9593, 94syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  =  a )
96 simp3l 985 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  a )  <  T
)
9795, 96eqbrtrrd 4202 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  T )
9897, 1syl6breq 4219 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) ) )
99 ltmin 10745 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  RR  /\  U  e.  RR  /\  ( E  ^ c  ( 1  /  U ) )  e.  RR )  -> 
( a  <  if ( U  <_  ( E  ^ c  ( 1  /  U ) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <->  ( a  <  U  /\  a  < 
( E  ^ c 
( 1  /  U
) ) ) ) )
10091, 44, 77, 99syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  if ( U  <_ 
( E  ^ c 
( 1  /  U
) ) ,  U ,  ( E  ^ c  ( 1  /  U ) ) )  <-> 
( a  <  U  /\  a  <  ( E  ^ c  ( 1  /  U ) ) ) ) )
10198, 100mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  <  U  /\  a  < 
( E  ^ c 
( 1  /  U
) ) ) )
102101simpld 446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  U )
103 rehalfcl 10158 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
10454, 103mp1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  e.  RR )
105 min2 10741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Re `  A
)  e.  RR  /\  1  e.  RR )  ->  if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  <_  1
)
10652, 54, 105sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  if (
( Re `  A
)  <_  1 , 
( Re `  A
) ,  1 )  <_  1 )
107 lediv1 9839 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( ( Re
`  A )  <_ 
1 ,  ( Re
`  A ) ,  1 )  e.  RR  /\  1  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
10858, 92, 60, 62, 107syl112anc 1188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  <_  1  <->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) ) )
109106, 108mpbid 202 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( if ( ( Re `  A )  <_  1 ,  ( Re `  A ) ,  1 )  /  2 )  <_  ( 1  / 
2 ) )
1102, 109syl5eqbr 4213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <_  ( 1  /  2 ) )
111 halflt1 10153 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  /  2 )  <  1
112111a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  2 )  <  1 )
11344, 104, 92, 110, 112lelttrd 9192 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  U  <  1 )
11491, 44, 92, 102, 113lttrd 9195 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  1 )
11530, 44, 114, 40cxplt3d 20584 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  <  ( Re `  b
)  <->  ( a  ^ c  ( Re `  b ) )  < 
( a  ^ c  U ) ) )
11690, 115mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  < 
( a  ^ c  U ) )
11743rpcnne0d 10621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  e.  CC  /\  U  =/=  0 ) )
118 recid 9656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  CC  /\  U  =/=  0 )  -> 
( U  x.  (
1  /  U ) )  =  1 )
119117, 118syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( U  x.  ( 1  /  U
) )  =  1 )
120119oveq2d 6064 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( U  x.  ( 1  /  U
) ) )  =  ( a  ^ c 
1 ) )
12143rpreccld 10622 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  RR+ )
122121rpcnd 10614 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( 1  /  U )  e.  CC )
12330, 44, 122cxpmuld 20586 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( U  x.  ( 1  /  U
) ) )  =  ( ( a  ^ c  U )  ^ c 
( 1  /  U
) ) )
12430rpcnd 10614 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  e.  CC )
125124cxp1d 20558 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  1 )  =  a )
126120, 123, 1253eqtr3d 2452 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  =  a )
127101simprd 450 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  a  <  ( E  ^ c  ( 1  /  U ) ) )
128126, 127eqbrtrd 4200 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  <  ( E  ^ c  ( 1  /  U ) ) )
12945rprege0d 10619 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  e.  RR  /\  0  <_  ( a  ^ c  U ) ) )
13047rprege0d 10619 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( E  e.  RR  /\  0  <_  E ) )
131 cxplt2 20550 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  ^ c  U )  e.  RR  /\  0  <_  ( a  ^ c  U )
)  /\  ( E  e.  RR  /\  0  <_  E )  /\  (
1  /  U )  e.  RR+ )  ->  (
( a  ^ c  U )  <  E  <->  ( ( a  ^ c  U )  ^ c 
( 1  /  U
) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
132129, 130, 121, 131syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( (
a  ^ c  U
)  <  E  <->  ( (
a  ^ c  U
)  ^ c  ( 1  /  U ) )  <  ( E  ^ c  ( 1  /  U ) ) ) )
133128, 132mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  U )  <  E )
13442, 46, 48, 116, 133lttrd 9195 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( a  ^ c  ( Re `  b ) )  < 
E )
13539, 134eqbrtrd 4200 . . . . . . . . . . . 12  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D )  /\  ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )
)  ->  ( abs `  ( a  ^ c 
b ) )  < 
E )
1361353expia 1155 . . . . . . . . . . 11  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR+  /\  b  e.  D ) )  ->  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
137136anassrs 630 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  /\  b  e.  D )  ->  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
138137ralrimiva 2757 . . . . . . . . 9  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR+ )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
13929, 138sylan2br 463 . . . . . . . 8  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  ( a  e.  RR  /\  0  <  a ) )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
140139expr 599 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  < 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
141 elpreima 5817 . . . . . . . . . . . . . . . . . . 19  |-  ( Re  Fn  CC  ->  (
b  e.  ( `' Re " RR+ )  <->  ( b  e.  CC  /\  ( Re `  b )  e.  RR+ ) ) )
1425, 6, 141mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ( `' Re "
RR+ )  <->  ( b  e.  CC  /\  ( Re
`  b )  e.  RR+ ) )
143142simprbi 451 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( `' Re "
RR+ )  ->  (
Re `  b )  e.  RR+ )
144143, 3eleq2s 2504 . . . . . . . . . . . . . . . 16  |-  ( b  e.  D  ->  (
Re `  b )  e.  RR+ )
145144rpne0d 10617 . . . . . . . . . . . . . . 15  |-  ( b  e.  D  ->  (
Re `  b )  =/=  0 )
146 fveq2 5695 . . . . . . . . . . . . . . . . 17  |-  ( b  =  0  ->  (
Re `  b )  =  ( Re ` 
0 ) )
147 re0 11920 . . . . . . . . . . . . . . . . 17  |-  ( Re
`  0 )  =  0
148146, 147syl6eq 2460 . . . . . . . . . . . . . . . 16  |-  ( b  =  0  ->  (
Re `  b )  =  0 )
149148necon3i 2614 . . . . . . . . . . . . . . 15  |-  ( ( Re `  b )  =/=  0  ->  b  =/=  0 )
150145, 149syl 16 . . . . . . . . . . . . . 14  |-  ( b  e.  D  ->  b  =/=  0 )
15136, 1500cxpd 20562 . . . . . . . . . . . . 13  |-  ( b  e.  D  ->  (
0  ^ c  b )  =  0 )
152151adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  ^ c  b )  =  0 )
153152abs00bd 12059 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^ c  b ) )  =  0 )
154 simpllr 736 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  E  e.  RR+ )
155154rpgt0d 10615 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  0  <  E )
156153, 155eqbrtrd 4200 . . . . . . . . . 10  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  ( abs `  ( 0  ^ c  b ) )  <  E )
157 oveq1 6055 . . . . . . . . . . . 12  |-  ( 0  =  a  ->  (
0  ^ c  b )  =  ( a  ^ c  b ) )
158157fveq2d 5699 . . . . . . . . . . 11  |-  ( 0  =  a  ->  ( abs `  ( 0  ^ c  b ) )  =  ( abs `  (
a  ^ c  b ) ) )
159158breq1d 4190 . . . . . . . . . 10  |-  ( 0  =  a  ->  (
( abs `  (
0  ^ c  b ) )  <  E  <->  ( abs `  ( a  ^ c  b ) )  <  E ) )
160156, 159syl5ibcom 212 . . . . . . . . 9  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
161160a1dd 44 . . . . . . . 8  |-  ( ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  /\  b  e.  D )  ->  (
0  =  a  -> 
( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
162161ralrimdva 2764 . . . . . . 7  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  =  a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
163140, 162jaod 370 . . . . . 6  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( ( 0  <  a  \/  0  =  a )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
16428, 163sylbid 207 . . . . 5  |-  ( ( ( A  e.  D  /\  E  e.  RR+ )  /\  a  e.  RR )  ->  ( 0  <_ 
a  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
165164expimpd 587 . . . 4  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( ( a  e.  RR  /\  0  <_ 
a )  ->  A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) ) )
16624, 165syl5bi 209 . . 3  |-  ( ( A  e.  D  /\  E  e.  RR+ )  -> 
( a  e.  ( 0 [,)  +oo )  ->  A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
167166ralrimiv 2756 . 2  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  A. a  e.  (
0 [,)  +oo ) A. b  e.  D  (
( ( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )
168 breq2 4184 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  a
)  <  d  <->  ( abs `  a )  <  T
) )
169 breq2 4184 . . . . . 6  |-  ( d  =  T  ->  (
( abs `  ( A  -  b )
)  <  d  <->  ( abs `  ( A  -  b
) )  <  T
) )
170168, 169anbi12d 692 . . . . 5  |-  ( d  =  T  ->  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  <->  ( ( abs `  a )  < 
T  /\  ( abs `  ( A  -  b
) )  <  T
) ) )
171170imbi1d 309 . . . 4  |-  ( d  =  T  ->  (
( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
)  <->  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b ) )  < 
T )  ->  ( abs `  ( a  ^ c  b ) )  <  E ) ) )
1721712ralbidv 2716 . . 3  |-  ( d  =  T  ->  ( A. a  e.  (
0 [,)  +oo ) A. b  e.  D  (
( ( abs `  a
)  <  d  /\  ( abs `  ( A  -  b ) )  <  d )  -> 
( abs `  (
a  ^ c  b ) )  <  E
)  <->  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  T  /\  ( abs `  ( A  -  b )
)  <  T )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) ) )
173172rspcev 3020 . 2  |-  ( ( T  e.  RR+  /\  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( (
( abs `  a
)  <  T  /\  ( abs `  ( A  -  b ) )  <  T )  -> 
( abs `  (
a  ^ c  b ) )  <  E
) )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
17423, 167, 173syl2anc 643 1  |-  ( ( A  e.  D  /\  E  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,)  +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  ( A  -  b )
)  <  d )  ->  ( abs `  (
a  ^ c  b ) )  <  E
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   E.wrex 2675   ifcif 3707   class class class wbr 4180   `'ccnv 4844   dom cdm 4845   "cima 4848    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6048   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    x. cmul 8959    +oocpnf 9081    < clt 9084    <_ cle 9085    - cmin 9255    / cdiv 9641   2c2 10013   RR+crp 10576   [,)cico 10882   Recre 11865   abscabs 12002   ↾t crest 13611   TopOpenctopn 13612  ℂfldccnfld 16666    ^ c ccxp 20414
This theorem is referenced by:  cxpcn3  20593
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032  ax-addf 9033  ax-mulf 9034
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-of 6272  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-2o 6692  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-oi 7443  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ioc 10885  df-ico 10886  df-icc 10887  df-fz 11008  df-fzo 11099  df-fl 11165  df-mod 11214  df-seq 11287  df-exp 11346  df-fac 11530  df-bc 11557  df-hash 11582  df-shft 11845  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-limsup 12228  df-clim 12245  df-rlim 12246  df-sum 12443  df-ef 12633  df-sin 12635  df-cos 12636  df-pi 12638  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-mulr 13506  df-starv 13507  df-sca 13508  df-vsca 13509  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-hom 13516  df-cco 13517  df-rest 13613  df-topn 13614  df-topgen 13630  df-pt 13631  df-prds 13634  df-xrs 13689  df-0g 13690  df-gsum 13691  df-qtop 13696  df-imas 13697  df-xps 13699  df-mre 13774  df-mrc 13775  df-acs 13777  df-mnd 14653  df-submnd 14702  df-mulg 14778  df-cntz 15079  df-cmn 15377  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-fbas 16662  df-fg 16663  df-cnfld 16667  df-top 16926  df-bases 16928  df-topon 16929  df-topsp 16930  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-lp 17163  df-perf 17164  df-cn 17253  df-cnp 17254  df-haus 17341  df-tx 17555  df-hmeo 17748  df-fil 17839  df-fm 17931  df-flim 17932  df-flf 17933  df-xms 18311  df-ms 18312  df-tms 18313  df-cncf 18869  df-limc 19714  df-dv 19715  df-log 20415  df-cxp 20416
  Copyright terms: Public domain W3C validator