MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpef Unicode version

Theorem cxpef 20012
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpef  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  B  e.  CC )  ->  ( A  ^ c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )

Proof of Theorem cxpef
StepHypRef Expression
1 cxpval 20011 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  ^ c  B )  =  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
213adant2 974 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  B  e.  CC )  ->  ( A  ^ c  B )  =  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
3 simp2 956 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  B  e.  CC )  ->  A  =/=  0 )
43neneqd 2462 . . 3  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  B  e.  CC )  ->  -.  A  =  0 )
5 iffalse 3572 . . 3  |-  ( -.  A  =  0  ->  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
64, 5syl 15 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  B  e.  CC )  ->  if ( A  =  0 ,  if ( B  =  0 ,  1 ,  0 ) ,  ( exp `  ( B  x.  ( log `  A
) ) ) )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
72, 6eqtrd 2315 1  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  B  e.  CC )  ->  ( A  ^ c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   ifcif 3565   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    x. cmul 8742   expce 12343   logclog 19912    ^ c ccxp 19913
This theorem is referenced by:  cxpexpz  20014  logcxp  20016  1cxp  20019  ecxp  20020  rpcxpcl  20023  cxpne0  20024  cxpadd  20026  mulcxp  20032  cxpmul  20035  abscxp  20039  abscxp2  20040  cxplt  20041  cxple2  20044  cxpsqrlem  20049  cxpsqr  20050  cxpefd  20059  1cubrlem  20137  bposlem9  20531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-mulcl 8799  ax-i2m1 8805
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-cxp 19915
  Copyright terms: Public domain W3C validator