MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpeq Unicode version

Theorem cxpeq 20509
Description: Solve an equation involving an  N-th power. The expression  -u 1  ^ c  ( 2  /  N )  =  exp ( 2 pi _i 
/  N ) is a way to write the primitive  N-th root of unity with the smallest positive argument. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
cxpeq  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
Distinct variable groups:    A, n    B, n    n, N

Proof of Theorem cxpeq
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl2 961 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  N  e.  NN )
2 nnm1nn0 10194 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
31, 2syl 16 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( N  -  1 )  e.  NN0 )
4 nn0uz 10453 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
53, 4syl6eleq 2478 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
6 eluzfz1 10997 . . . . . 6  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
75, 6syl 16 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  0  e.  ( 0 ... ( N  -  1 ) ) )
8 neg1cn 10000 . . . . . . . . . 10  |-  -u 1  e.  CC
9 2re 10002 . . . . . . . . . . . 12  |-  2  e.  RR
10 simp2 958 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  e.  NN )
11 nndivre 9968 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  N  e.  NN )  ->  ( 2  /  N
)  e.  RR )
129, 10, 11sylancr 645 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
2  /  N )  e.  RR )
1312recnd 9048 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
2  /  N )  e.  CC )
14 cxpcl 20433 . . . . . . . . . 10  |-  ( (
-u 1  e.  CC  /\  ( 2  /  N
)  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  N ) )  e.  CC )
158, 13, 14sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  N ) )  e.  CC )
1615adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( -u 1  ^ c  ( 2  /  N ) )  e.  CC )
17 0nn0 10169 . . . . . . . 8  |-  0  e.  NN0
18 expcl 11327 . . . . . . . 8  |-  ( ( ( -u 1  ^ c  ( 2  /  N ) )  e.  CC  /\  0  e. 
NN0 )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ 0 )  e.  CC )
1916, 17, 18sylancl 644 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ 0 )  e.  CC )
2019mul02d 9197 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ 0 ) )  =  0 )
21 simprl 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  A  =  0 )
2221oveq1d 6036 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( A ^ N )  =  ( 0 ^ N
) )
23 simprr 734 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( A ^ N )  =  B )
2410expd 11467 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0 ^ N )  =  0 )
2522, 23, 243eqtr3d 2428 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  B  =  0 )
2625oveq1d 6036 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( B  ^ c  ( 1  /  N ) )  =  ( 0  ^ c  ( 1  /  N ) ) )
27 nncn 9941 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
28 nnne0 9965 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
29 reccl 9618 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 1  /  N
)  e.  CC )
30 recne0 9624 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 1  /  N
)  =/=  0 )
3129, 300cxpd 20469 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  N  =/=  0 )  -> 
( 0  ^ c 
( 1  /  N
) )  =  0 )
3227, 28, 31syl2anc 643 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0  ^ c  ( 1  /  N ) )  =  0 )
331, 32syl 16 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
0  ^ c  ( 1  /  N ) )  =  0 )
3426, 33eqtrd 2420 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  ( B  ^ c  ( 1  /  N ) )  =  0 )
3534oveq1d 6036 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  (
( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ 0 ) )  =  ( 0  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ 0 ) ) )
3620, 35, 213eqtr4rd 2431 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ 0 ) ) )
37 oveq2 6029 . . . . . . . 8  |-  ( n  =  0  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
)  =  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ 0 ) )
3837oveq2d 6037 . . . . . . 7  |-  ( n  =  0  ->  (
( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) )  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ 0 ) ) )
3938eqeq2d 2399 . . . . . 6  |-  ( n  =  0  ->  ( A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  <->  A  =  (
( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ 0 ) ) ) )
4039rspcev 2996 . . . . 5  |-  ( ( 0  e.  ( 0 ... ( N  - 
1 ) )  /\  A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ 0 ) ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) )
417, 36, 40syl2anc 643 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  ( A  =  0  /\  ( A ^ N )  =  B ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) )
4241expr 599 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =  0
)  ->  ( ( A ^ N )  =  B  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
43 simpl1 960 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  A  e.  CC )
44 simpr 448 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  A  =/=  0 )
45 simpl2 961 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  NN )
4645nnzd 10307 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  ZZ )
47 explog 20356 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  N  e.  ZZ )  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A ) ) ) )
4843, 44, 46, 47syl3anc 1184 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A
) ) ) )
4948eqcomd 2393 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N ) )
5010nncnd 9949 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  e.  CC )
5150adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  CC )
5243, 44logcld 20336 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( log `  A )  e.  CC )
5351, 52mulcld 9042 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( N  x.  ( log `  A
) )  e.  CC )
5445nnnn0d 10207 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  N  e.  NN0 )
5543, 54expcld 11451 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  e.  CC )
5643, 44, 46expne0d 11457 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( A ^ N )  =/=  0
)
57 eflogeq 20364 . . . . . . 7  |-  ( ( ( N  x.  ( log `  A ) )  e.  CC  /\  ( A ^ N )  e.  CC  /\  ( A ^ N )  =/=  0 )  ->  (
( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N )  <->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) ) )
5853, 55, 56, 57syl3anc 1184 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( ( exp `  ( N  x.  ( log `  A ) ) )  =  ( A ^ N )  <->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) ) ) )
5949, 58mpbid 202 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) )
6055, 56logcld 20336 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( log `  ( A ^ N
) )  e.  CC )
6160adantr 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( log `  ( A ^ N ) )  e.  CC )
62 ax-icn 8983 . . . . . . . . . . 11  |-  _i  e.  CC
63 2cn 10003 . . . . . . . . . . . 12  |-  2  e.  CC
64 pire 20240 . . . . . . . . . . . . 13  |-  pi  e.  RR
6564recni 9036 . . . . . . . . . . . 12  |-  pi  e.  CC
6663, 65mulcli 9029 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  CC
6762, 66mulcli 9029 . . . . . . . . . 10  |-  ( _i  x.  ( 2  x.  pi ) )  e.  CC
68 zcn 10220 . . . . . . . . . . 11  |-  ( m  e.  ZZ  ->  m  e.  CC )
6968adantl 453 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  CC )
70 mulcl 9008 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
2  x.  pi ) )  e.  CC  /\  m  e.  CC )  ->  ( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  e.  CC )
7167, 69, 70sylancr 645 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( _i  x.  (
2  x.  pi ) )  x.  m )  e.  CC )
7261, 71addcld 9041 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  e.  CC )
7351adantr 452 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  CC )
7452adantr 452 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( log `  A )  e.  CC )
7510nnne0d 9977 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  N  =/=  0 )
7675ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  =/=  0 )
7772, 73, 74, 76divmuld 9745 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A
)  <->  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) ) ) )
78 fveq2 5669 . . . . . . . 8  |-  ( ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A )  ->  ( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) ) )
7973, 76reccld 9716 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
1  /  N )  e.  CC )
8079, 61mulcld 9042 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 1  /  N
)  x.  ( log `  ( A ^ N
) ) )  e.  CC )
8113ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
2  /  N )  e.  CC )
8281, 69mulcld 9042 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 2  /  N
)  x.  m )  e.  CC )
8362, 65mulcli 9029 . . . . . . . . . . . . 13  |-  ( _i  x.  pi )  e.  CC
84 mulcl 9008 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  /  N )  x.  m
)  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
)  e.  CC )
8582, 83, 84sylancl 644 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )  e.  CC )
86 efadd 12624 . . . . . . . . . . . 12  |-  ( ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  e.  CC  /\  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )  e.  CC )  -> 
( exp `  (
( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )  =  ( ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )  x.  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) ) )
8780, 85, 86syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N
)  x.  m )  x.  ( _i  x.  pi ) ) ) )  =  ( ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )  x.  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) ) )
8861, 71, 73, 76divdird 9761 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( ( ( log `  ( A ^ N ) )  /  N )  +  ( ( ( _i  x.  ( 2  x.  pi ) )  x.  m )  /  N
) ) )
8961, 73, 76divrec2d 9727 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( log `  ( A ^ N ) )  /  N )  =  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) )
9067a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
_i  x.  ( 2  x.  pi ) )  e.  CC )
9190, 69, 73, 76div23d 9760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  /  N )  =  ( ( ( _i  x.  ( 2  x.  pi ) )  /  N )  x.  m ) )
9262, 63, 65mul12i 9194 . . . . . . . . . . . . . . . . . 18  |-  ( _i  x.  ( 2  x.  pi ) )  =  ( 2  x.  (
_i  x.  pi )
)
9392oveq1i 6031 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  ( 2  x.  pi ) )  /  N )  =  ( ( 2  x.  ( _i  x.  pi ) )  /  N
)
9463a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  2  e.  CC )
9583a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
_i  x.  pi )  e.  CC )
9694, 95, 73, 76div23d 9760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( 2  x.  (
_i  x.  pi )
)  /  N )  =  ( ( 2  /  N )  x.  ( _i  x.  pi ) ) )
9793, 96syl5eq 2432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( _i  x.  (
2  x.  pi ) )  /  N )  =  ( ( 2  /  N )  x.  ( _i  x.  pi ) ) )
9897oveq1d 6036 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  /  N
)  x.  m )  =  ( ( ( 2  /  N )  x.  ( _i  x.  pi ) )  x.  m
) )
9981, 95, 69mul32d 9209 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( 2  /  N )  x.  (
_i  x.  pi )
)  x.  m )  =  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) )
10091, 98, 993eqtrd 2424 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( _i  x.  ( 2  x.  pi ) )  x.  m
)  /  N )  =  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) )
10189, 100oveq12d 6039 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  /  N )  +  ( ( ( _i  x.  ( 2  x.  pi ) )  x.  m )  /  N
) )  =  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )
10288, 101eqtrd 2420 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N )  =  ( ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) )
103102fveq2d 5673 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  (
( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) )  +  ( ( ( 2  /  N )  x.  m )  x.  ( _i  x.  pi ) ) ) ) )
10455adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( A ^ N )  e.  CC )
10556adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( A ^ N )  =/=  0 )
106104, 105, 79cxpefd 20471 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( A ^ N
)  ^ c  ( 1  /  N ) )  =  ( exp `  ( ( 1  /  N )  x.  ( log `  ( A ^ N ) ) ) ) )
1078a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  -u 1  e.  CC )
108 ax-1cn 8982 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
109 ax-1ne0 8993 . . . . . . . . . . . . . . . 16  |-  1  =/=  0
110108, 109negne0i 9308 . . . . . . . . . . . . . . 15  |-  -u 1  =/=  0
111110a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  -u 1  =/=  0 )
112 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
113107, 111, 81, 112cxpmul2zd 20475 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^ c  ( ( 2  /  N
)  x.  m ) )  =  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ m
) )
114107, 111, 82cxpefd 20471 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^ c  ( ( 2  /  N
)  x.  m ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  ( log `  -u 1 ) ) ) )
115 logm1 20351 . . . . . . . . . . . . . . . 16  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
116115oveq2i 6032 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  /  N
)  x.  m )  x.  ( log `  -u 1
) )  =  ( ( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) )
117116fveq2i 5672 . . . . . . . . . . . . . 14  |-  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  ( log `  -u 1 ) ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) )
118114, 117syl6eq 2436 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^ c  ( ( 2  /  N
)  x.  m ) )  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) )
119107, 81cxpcld 20467 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^ c  ( 2  /  N ) )  e.  CC )
1208a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  -u 1  e.  CC )
121110a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  -u 1  =/=  0 )
122120, 121, 13cxpne0d 20472 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  N ) )  =/=  0 )
123122ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( -u 1  ^ c  ( 2  /  N ) )  =/=  0 )
124119, 123, 112expclzd 11456 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ m
)  e.  CC )
12545adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  NN )
126112, 125zmodcld 11195 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  NN0 )
127119, 126expcld 11451 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
)  e.  CC )
128126nn0zd 10306 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  ZZ )
129119, 123, 128expne0d 11457 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
)  =/=  0 )
130119, 123, 128, 112expsubd 11462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) )  =  ( ( ( -u 1  ^ c  ( 2  /  N ) ) ^
m )  /  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
) ) )
131125nnzd 10307 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
132 zre 10219 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ZZ  ->  m  e.  RR )
133132adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  m  e.  RR )
134125nnrpd 10580 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  N  e.  RR+ )
135 moddifz 11188 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  RR  /\  N  e.  RR+ )  -> 
( ( m  -  ( m  mod  N ) )  /  N )  e.  ZZ )
136133, 134, 135syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( m  -  (
m  mod  N )
)  /  N )  e.  ZZ )
137 expmulz 11354 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( -u 1  ^ c  ( 2  /  N ) )  e.  CC  /\  ( -u 1  ^ c  ( 2  /  N ) )  =/=  0 )  /\  ( N  e.  ZZ  /\  ( ( m  -  ( m  mod  N ) )  /  N )  e.  ZZ ) )  -> 
( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( N  x.  ( ( m  -  ( m  mod  N ) )  /  N ) ) )  =  ( ( ( -u 1  ^ c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) ) )
138119, 123, 131, 136, 137syl22anc 1185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) ) )  =  ( ( ( -u 1  ^ c  ( 2  /  N ) ) ^ N ) ^ (
( m  -  (
m  mod  N )
)  /  N ) ) )
139126nn0cnd 10209 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  CC )
14069, 139subcld 9344 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  -  ( m  mod  N ) )  e.  CC )
141140, 73, 76divcan2d 9725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) )  =  ( m  -  ( m  mod  N ) ) )
142141oveq2d 6037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ ( N  x.  ( (
m  -  ( m  mod  N ) )  /  N ) ) )  =  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) ) )
143 root1id 20506 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ N
)  =  1 )
144125, 143syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ N
)  =  1 )
145144oveq1d 6036 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^ c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) )  =  ( 1 ^ ( ( m  -  ( m  mod  N ) )  /  N
) ) )
146 1exp 11337 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  -  (
m  mod  N )
)  /  N )  e.  ZZ  ->  (
1 ^ ( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
147136, 146syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
1 ^ ( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
148145, 147eqtrd 2420 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^ c  ( 2  /  N ) ) ^ N ) ^
( ( m  -  ( m  mod  N ) )  /  N ) )  =  1 )
149138, 142, 1483eqtr3d 2428 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  -  ( m  mod  N ) ) )  =  1 )
150130, 149eqtr3d 2422 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( -u 1  ^ c  ( 2  /  N ) ) ^ m )  / 
( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  1 )
151124, 127, 129, 150diveq1d 9731 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ m
)  =  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
) )
152113, 118, 1513eqtr3rd 2429 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
)  =  ( exp `  ( ( ( 2  /  N )  x.  m )  x.  (
_i  x.  pi )
) ) )
153106, 152oveq12d 6039 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
) )  =  ( ( exp `  (
( 1  /  N
)  x.  ( log `  ( A ^ N
) ) ) )  x.  ( exp `  (
( ( 2  /  N )  x.  m
)  x.  ( _i  x.  pi ) ) ) ) )
15487, 103, 1533eqtr4d 2430 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) ) )
155 eflog 20342 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  ( log `  A ) )  =  A )
15643, 44, 155syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( exp `  ( log `  A
) )  =  A )
157156adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  ( exp `  ( log `  A
) )  =  A )
158154, 157eqeq12d 2402 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) )  <-> 
( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
159 zmodfz 11196 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  N  e.  NN )  ->  ( m  mod  N
)  e.  ( 0 ... ( N  - 
1 ) ) )
160112, 125, 159syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
m  mod  N )  e.  ( 0 ... ( N  -  1 ) ) )
161 eqcom 2390 . . . . . . . . . . . . 13  |-  ( A  =  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  <->  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  =  A )
162 oveq2 6029 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  mod  N )  ->  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ n )  =  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )
163162oveq2d 6037 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  mod  N )  ->  ( (
( A ^ N
)  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) )  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ (
m  mod  N )
) ) )
164163eqeq1d 2396 . . . . . . . . . . . . 13  |-  ( n  =  ( m  mod  N )  ->  ( (
( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) )  =  A  <-> 
( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
165161, 164syl5bb 249 . . . . . . . . . . . 12  |-  ( n  =  ( m  mod  N )  ->  ( A  =  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  <->  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A ) )
166165rspcev 2996 . . . . . . . . . . 11  |-  ( ( ( m  mod  N
)  e.  ( 0 ... ( N  - 
1 ) )  /\  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) )
167166ex 424 . . . . . . . . . 10  |-  ( ( m  mod  N )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
168160, 167syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ ( m  mod  N ) ) )  =  A  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
169158, 168sylbid 207 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( exp `  (
( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  /  N ) )  =  ( exp `  ( log `  A ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N
)  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
17078, 169syl5 30 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  /  N )  =  ( log `  A
)  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
17177, 170sylbird 227 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0 )  /\  m  e.  ZZ )  ->  (
( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N
) )  +  ( ( _i  x.  (
2  x.  pi ) )  x.  m ) )  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
172171rexlimdva 2774 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( E. m  e.  ZZ  ( N  x.  ( log `  A ) )  =  ( ( log `  ( A ^ N ) )  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  m ) )  ->  E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) ) ) )
17359, 172mpd 15 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) )
174 oveq1 6028 . . . . . . 7  |-  ( ( A ^ N )  =  B  ->  (
( A ^ N
)  ^ c  ( 1  /  N ) )  =  ( B  ^ c  ( 1  /  N ) ) )
175174oveq1d 6036 . . . . . 6  |-  ( ( A ^ N )  =  B  ->  (
( ( A ^ N )  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) )  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) )
176175eqeq2d 2399 . . . . 5  |-  ( ( A ^ N )  =  B  ->  ( A  =  ( (
( A ^ N
)  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) )  <->  A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ n ) ) ) )
177176rexbidv 2671 . . . 4  |-  ( ( A ^ N )  =  B  ->  ( E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( ( A ^ N )  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
178173, 177syl5ibcom 212 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  A  =/=  0
)  ->  ( ( A ^ N )  =  B  ->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
17942, 178pm2.61dane 2629 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  ->  E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) ) ) )
180 simp3 959 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  B  e.  CC )
181 nnrecre 9969 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
1821813ad2ant2 979 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
1  /  N )  e.  RR )
183182recnd 9048 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
1  /  N )  e.  CC )
184180, 183cxpcld 20467 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( B  ^ c  ( 1  /  N ) )  e.  CC )
185184adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( B  ^ c  ( 1  /  N ) )  e.  CC )
186 elfznn0 11016 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  NN0 )
187 expcl 11327 . . . . . . 7  |-  ( ( ( -u 1  ^ c  ( 2  /  N ) )  e.  CC  /\  n  e. 
NN0 )  ->  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
)  e.  CC )
18815, 186, 187syl2an 464 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n )  e.  CC )
18910adantr 452 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  NN )
190189nnnn0d 10207 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  NN0 )
191185, 188, 190mulexpd 11466 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  ( ( ( B  ^ c 
( 1  /  N
) ) ^ N
)  x.  ( ( ( -u 1  ^ c  ( 2  /  N ) ) ^
n ) ^ N
) ) )
192180adantr 452 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  B  e.  CC )
193 cxproot 20449 . . . . . . 7  |-  ( ( B  e.  CC  /\  N  e.  NN )  ->  ( ( B  ^ c  ( 1  /  N ) ) ^ N )  =  B )
194192, 189, 193syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( B  ^ c  ( 1  /  N ) ) ^ N )  =  B )
195186adantl 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  NN0 )
196195nn0cnd 10209 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  CC )
197189nncnd 9949 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  N  e.  CC )
198196, 197mulcomd 9043 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( n  x.  N )  =  ( N  x.  n ) )
199198oveq2d 6037 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ ( n  x.  N ) )  =  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ ( N  x.  n ) ) )
20015adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( -u 1  ^ c  ( 2  /  N ) )  e.  CC )
201200, 190, 195expmuld 11454 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ ( n  x.  N ) )  =  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ^ N ) )
202200, 195, 190expmuld 11454 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ ( N  x.  n ) )  =  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ N
) ^ n ) )
203199, 201, 2023eqtr3d 2428 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ^ N )  =  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ N
) ^ n ) )
204189, 143syl 16 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ N )  =  1 )
205204oveq1d 6036 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ N
) ^ n )  =  ( 1 ^ n ) )
206 elfzelz 10992 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( N  -  1 ) )  ->  n  e.  ZZ )
207206adantl 453 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  n  e.  ZZ )
208 1exp 11337 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
209207, 208syl 16 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( 1 ^ n )  =  1 )
210203, 205, 2093eqtrd 2424 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ^ N )  =  1 )
211194, 210oveq12d 6039 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^ c  ( 1  /  N ) ) ^ N )  x.  ( ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ^ N ) )  =  ( B  x.  1 ) )
212192mulid1d 9039 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( B  x.  1 )  =  B )
213191, 211, 2123eqtrd 2424 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( ( B  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  B )
214 oveq1 6028 . . . . 5  |-  ( A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  ( ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ n ) ) ^ N ) )
215214eqeq1d 2396 . . . 4  |-  ( A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  ->  ( ( A ^ N )  =  B  <->  ( ( ( B  ^ c  ( 1  /  N ) )  x.  ( (
-u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ^ N
)  =  B ) )
216213, 215syl5ibrcom 214 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  /\  n  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u 1  ^ c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  B ) )
217216rexlimdva 2774 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  ( E. n  e.  (
0 ... ( N  - 
1 ) ) A  =  ( ( B  ^ c  ( 1  /  N ) )  x.  ( ( -u
1  ^ c  ( 2  /  N ) ) ^ n ) )  ->  ( A ^ N )  =  B ) )
218179, 217impbid 184 1  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  B  e.  CC )  ->  (
( A ^ N
)  =  B  <->  E. n  e.  ( 0 ... ( N  -  1 ) ) A  =  ( ( B  ^ c 
( 1  /  N
) )  x.  (
( -u 1  ^ c 
( 2  /  N
) ) ^ n
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925   _ici 8926    + caddc 8927    x. cmul 8929    - cmin 9224   -ucneg 9225    / cdiv 9610   NNcn 9933   2c2 9982   NN0cn0 10154   ZZcz 10215   ZZ>=cuz 10421   RR+crp 10545   ...cfz 10976    mod cmo 11178   ^cexp 11310   expce 12592   picpi 12597   logclog 20320    ^ c ccxp 20321
This theorem is referenced by:  1cubr  20550
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601  df-pi 12603  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-cxp 20323
  Copyright terms: Public domain W3C validator