MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrlem Unicode version

Theorem cxpsqrlem 20065
Description: Lemma for cxpsqr 20066. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrlem  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  RR )

Proof of Theorem cxpsqrlem
StepHypRef Expression
1 ax-icn 8812 . . 3  |-  _i  e.  CC
2 sqrcl 11861 . . . 4  |-  ( A  e.  CC  ->  ( sqr `  A )  e.  CC )
32ad2antrr 706 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( sqr `  A )  e.  CC )
4 mulcl 8837 . . 3  |-  ( ( _i  e.  CC  /\  ( sqr `  A )  e.  CC )  -> 
( _i  x.  ( sqr `  A ) )  e.  CC )
51, 3, 4sylancr 644 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  CC )
6 imval 11608 . . . 4  |-  ( ( _i  x.  ( sqr `  A ) )  e.  CC  ->  ( Im `  ( _i  x.  ( sqr `  A ) ) )  =  ( Re
`  ( ( _i  x.  ( sqr `  A
) )  /  _i ) ) )
75, 6syl 15 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Im `  ( _i  x.  ( sqr `  A
) ) )  =  ( Re `  (
( _i  x.  ( sqr `  A ) )  /  _i ) ) )
8 ine0 9231 . . . . . 6  |-  _i  =/=  0
9 divcan3 9464 . . . . . 6  |-  ( ( ( sqr `  A
)  e.  CC  /\  _i  e.  CC  /\  _i  =/=  0 )  ->  (
( _i  x.  ( sqr `  A ) )  /  _i )  =  ( sqr `  A
) )
101, 8, 9mp3an23 1269 . . . . 5  |-  ( ( sqr `  A )  e.  CC  ->  (
( _i  x.  ( sqr `  A ) )  /  _i )  =  ( sqr `  A
) )
113, 10syl 15 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( _i  x.  ( sqr `  A ) )  /  _i )  =  ( sqr `  A
) )
1211fveq2d 5545 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( (
_i  x.  ( sqr `  A ) )  /  _i ) )  =  ( Re `  ( sqr `  A ) ) )
13 1re 8853 . . . . . . . . . . . . . 14  |-  1  e.  RR
14 rehalfcl 9954 . . . . . . . . . . . . . 14  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
1513, 14ax-mp 8 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
1615recni 8865 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  CC
17 logcl 19942 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
18 mulcl 8837 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( log `  A )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( log `  A ) )  e.  CC )
1916, 17, 18sylancr 644 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  / 
2 )  x.  ( log `  A ) )  e.  CC )
2019recld 11695 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) )  e.  RR )
2120reefcld 12385 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR )
2219imcld 11696 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  e.  RR )
2322recoscld 12440 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR )
2420rpefcld 12401 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR+ )
2524rpge0d 10410 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) ) )
26 immul2 11638 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  RR  /\  ( log `  A )  e.  CC )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( 1  /  2 )  x.  ( Im `  ( log `  A ) ) ) )
2715, 17, 26sylancr 644 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( 1  /  2 )  x.  ( Im `  ( log `  A ) ) ) )
2817imcld 11696 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  RR )
2928recnd 8877 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  CC )
30 mulcom 8839 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( Im `  ( log `  A ) )  e.  CC )  ->  (
( 1  /  2
)  x.  ( Im
`  ( log `  A
) ) )  =  ( ( Im `  ( log `  A ) )  x.  ( 1  /  2 ) ) )
3116, 29, 30sylancr 644 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  / 
2 )  x.  (
Im `  ( log `  A ) ) )  =  ( ( Im
`  ( log `  A
) )  x.  (
1  /  2 ) ) )
3227, 31eqtrd 2328 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( Im
`  ( log `  A
) )  x.  (
1  /  2 ) ) )
33 logimcl 19943 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
3433simpld 445 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u pi  <  ( Im
`  ( log `  A
) ) )
35 pire 19848 . . . . . . . . . . . . . . . 16  |-  pi  e.  RR
3635renegcli 9124 . . . . . . . . . . . . . . 15  |-  -u pi  e.  RR
37 ltle 8926 . . . . . . . . . . . . . . 15  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
3836, 28, 37sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
3934, 38mpd 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u pi  <_  ( Im `  ( log `  A
) ) )
4033simprd 449 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  <_  pi )
4136, 35elicc2i 10732 . . . . . . . . . . . . 13  |-  ( ( Im `  ( log `  A ) )  e.  ( -u pi [,] pi )  <->  ( ( Im
`  ( log `  A
) )  e.  RR  /\  -u pi  <_  ( Im
`  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  <_  pi ) )
4228, 39, 40, 41syl3anbrc 1136 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  ( log `  A ) )  e.  ( -u pi [,] pi ) )
43 halfgt0 9948 . . . . . . . . . . . . . 14  |-  0  <  ( 1  /  2
)
4415, 43elrpii 10373 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR+
4535recni 8865 . . . . . . . . . . . . . . 15  |-  pi  e.  CC
46 2cn 9832 . . . . . . . . . . . . . . 15  |-  2  e.  CC
47 2ne0 9845 . . . . . . . . . . . . . . 15  |-  2  =/=  0
48 divneg 9471 . . . . . . . . . . . . . . 15  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
pi  /  2 )  =  ( -u pi  /  2 ) )
4945, 46, 47, 48mp3an 1277 . . . . . . . . . . . . . 14  |-  -u (
pi  /  2 )  =  ( -u pi  /  2 )
5036recni 8865 . . . . . . . . . . . . . . 15  |-  -u pi  e.  CC
5150, 46, 47divreci 9521 . . . . . . . . . . . . . 14  |-  ( -u pi  /  2 )  =  ( -u pi  x.  ( 1  /  2
) )
5249, 51eqtr2i 2317 . . . . . . . . . . . . 13  |-  ( -u pi  x.  ( 1  / 
2 ) )  = 
-u ( pi  / 
2 )
5345, 46, 47divreci 9521 . . . . . . . . . . . . . 14  |-  ( pi 
/  2 )  =  ( pi  x.  (
1  /  2 ) )
5453eqcomi 2300 . . . . . . . . . . . . 13  |-  ( pi  x.  ( 1  / 
2 ) )  =  ( pi  /  2
)
5536, 35, 44, 52, 54iccdili 10790 . . . . . . . . . . . 12  |-  ( ( Im `  ( log `  A ) )  e.  ( -u pi [,] pi )  ->  ( ( Im `  ( log `  A ) )  x.  ( 1  /  2
) )  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) )
5642, 55syl 15 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( Im `  ( log `  A ) )  x.  ( 1  /  2 ) )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
5732, 56eqeltrd 2370 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
58 cosq14ge0 19895 . . . . . . . . . 10  |-  ( ( Im `  ( ( 1  /  2 )  x.  ( log `  A
) ) )  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  ->  0  <_  ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) )
5957, 58syl 15 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) ) )
6021, 23, 25, 59mulge0d 9365 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( ( exp `  ( Re `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) )  x.  ( cos `  ( Im `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) ) ) )
61 cxpef 20028 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  (
1  /  2 )  e.  CC )  -> 
( A  ^ c 
( 1  /  2
) )  =  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )
6216, 61mp3an3 1266 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^ c 
( 1  /  2
) )  =  ( exp `  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )
63 efeul 12458 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  x.  ( log `  A ) )  e.  CC  ->  ( exp `  ( ( 1  / 
2 )  x.  ( log `  A ) ) )  =  ( ( exp `  ( Re
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )
6419, 63syl 15 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
( 1  /  2
)  x.  ( log `  A ) ) )  =  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( ( cos `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )
6562, 64eqtrd 2328 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( A  ^ c 
( 1  /  2
) )  =  ( ( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )
6665fveq2d 5545 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( A  ^ c  ( 1  /  2 ) ) )  =  ( Re
`  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( ( cos `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) ) )
6723recnd 8877 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  CC )
6822resincld 12439 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  RR )
6968recnd 8877 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  e.  CC )
70 mulcl 8837 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  e.  CC )  -> 
( _i  x.  ( sin `  ( Im `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) ) )  e.  CC )
711, 69, 70sylancr 644 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( _i  x.  ( sin `  ( Im `  ( ( 1  / 
2 )  x.  ( log `  A ) ) ) ) )  e.  CC )
7267, 71addcld 8870 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) )  e.  CC )
7321, 72remul2d 11728 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  (
( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )  =  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( Re
`  ( ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  +  ( _i  x.  ( sin `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) ) )
7423, 68crred 11732 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  (
( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) )  =  ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) )
7574oveq2d 5890 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( exp `  (
Re `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( Re `  ( ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) )  +  ( _i  x.  ( sin `  ( Im
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) ) ) ) ) )  =  ( ( exp `  ( Re `  (
( 1  /  2
)  x.  ( log `  A ) ) ) )  x.  ( cos `  ( Im `  (
( 1  /  2
)  x.  ( log `  A ) ) ) ) ) )
7666, 73, 753eqtrd 2332 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( Re `  ( A  ^ c  ( 1  /  2 ) ) )  =  ( ( exp `  ( Re
`  ( ( 1  /  2 )  x.  ( log `  A
) ) ) )  x.  ( cos `  (
Im `  ( (
1  /  2 )  x.  ( log `  A
) ) ) ) ) )
7760, 76breqtrrd 4065 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
0  <_  ( Re `  ( A  ^ c 
( 1  /  2
) ) ) )
7877adantr 451 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_  ( Re `  ( A  ^ c  ( 1  /  2 ) ) ) )
79 simpr 447 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  ( A  ^ c  ( 1  /  2 ) )  =  -u ( sqr `  A
) )
8079fveq2d 5545 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( A  ^ c  ( 1  /  2 ) ) )  =  ( Re
`  -u ( sqr `  A
) ) )
813renegd 11710 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  -u ( sqr `  A ) )  = 
-u ( Re `  ( sqr `  A ) ) )
8280, 81eqtrd 2328 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( A  ^ c  ( 1  /  2 ) ) )  =  -u (
Re `  ( sqr `  A ) ) )
8378, 82breqtrd 4063 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_ 
-u ( Re `  ( sqr `  A ) ) )
843recld 11695 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( sqr `  A ) )  e.  RR )
8584le0neg1d 9360 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( Re `  ( sqr `  A ) )  <_  0  <->  0  <_  -u ( Re `  ( sqr `  A ) ) ) )
8683, 85mpbird 223 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( sqr `  A ) )  <_ 
0 )
87 sqrrege0 11865 . . . . 5  |-  ( A  e.  CC  ->  0  <_  ( Re `  ( sqr `  A ) ) )
8887ad2antrr 706 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  0  <_  ( Re `  ( sqr `  A ) ) )
89 0re 8854 . . . . 5  |-  0  e.  RR
90 letri3 8923 . . . . 5  |-  ( ( ( Re `  ( sqr `  A ) )  e.  RR  /\  0  e.  RR )  ->  (
( Re `  ( sqr `  A ) )  =  0  <->  ( (
Re `  ( sqr `  A ) )  <_ 
0  /\  0  <_  ( Re `  ( sqr `  A ) ) ) ) )
9184, 89, 90sylancl 643 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
( Re `  ( sqr `  A ) )  =  0  <->  ( (
Re `  ( sqr `  A ) )  <_ 
0  /\  0  <_  ( Re `  ( sqr `  A ) ) ) ) )
9286, 88, 91mpbir2and 888 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Re `  ( sqr `  A ) )  =  0 )
937, 12, 923eqtrd 2332 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
Im `  ( _i  x.  ( sqr `  A
) ) )  =  0 )
945, 93reim0bd 11701 1  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( A  ^ c  ( 1  / 
2 ) )  = 
-u ( sqr `  A
) )  ->  (
_i  x.  ( sqr `  A ) )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   -ucneg 9054    / cdiv 9439   2c2 9811   [,]cicc 10675   Recre 11598   Imcim 11599   sqrcsqr 11734   expce 12359   sincsin 12361   cosccos 12362   picpi 12364   logclog 19928    ^ c ccxp 19929
This theorem is referenced by:  cxpsqr  20066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator