MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubg2 Unicode version

Theorem cycsubg2 14654
Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cycsubg2.x  |-  X  =  ( Base `  G
)
cycsubg2.t  |-  .x.  =  (.g
`  G )
cycsubg2.f  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
cycsubg2.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
cycsubg2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( K `  { A } )  =  ran  F )
Distinct variable groups:    x, A    x, G    x,  .x.    x, X
Allowed substitution hints:    F( x)    K( x)

Proof of Theorem cycsubg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 snssg 3754 . . . . . 6  |-  ( A  e.  X  ->  ( A  e.  y  <->  { A }  C_  y ) )
21bicomd 192 . . . . 5  |-  ( A  e.  X  ->  ( { A }  C_  y  <->  A  e.  y ) )
32adantl 452 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( { A }  C_  y  <->  A  e.  y
) )
43rabbidv 2780 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  { y  e.  (SubGrp `  G )  |  { A }  C_  y }  =  { y  e.  (SubGrp `  G )  |  A  e.  y } )
54inteqd 3867 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  |^| { y  e.  (SubGrp `  G )  |  { A }  C_  y }  =  |^| { y  e.  (SubGrp `  G )  |  A  e.  y } )
6 cycsubg2.x . . . . 5  |-  X  =  ( Base `  G
)
76subgacs 14652 . . . 4  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  X ) )
8 acsmre 13554 . . . 4  |-  ( (SubGrp `  G )  e.  (ACS
`  X )  -> 
(SubGrp `  G )  e.  (Moore `  X )
)
97, 8syl 15 . . 3  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (Moore `  X ) )
10 snssi 3759 . . 3  |-  ( A  e.  X  ->  { A }  C_  X )
11 cycsubg2.k . . . 4  |-  K  =  (mrCls `  (SubGrp `  G
) )
1211mrcval 13512 . . 3  |-  ( ( (SubGrp `  G )  e.  (Moore `  X )  /\  { A }  C_  X )  ->  ( K `  { A } )  =  |^| { y  e.  (SubGrp `  G )  |  { A }  C_  y } )
139, 10, 12syl2an 463 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( K `  { A } )  =  |^| { y  e.  (SubGrp `  G )  |  { A }  C_  y } )
14 cycsubg2.t . . 3  |-  .x.  =  (.g
`  G )
15 cycsubg2.f . . 3  |-  F  =  ( x  e.  ZZ  |->  ( x  .x.  A ) )
166, 14, 15cycsubg 14645 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ran  F  =  |^| { y  e.  (SubGrp `  G )  |  A  e.  y } )
175, 13, 163eqtr4d 2325 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( K `  { A } )  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   {csn 3640   |^|cint 3862    e. cmpt 4077   ran crn 4690   ` cfv 5255  (class class class)co 5858   ZZcz 10024   Basecbs 13148  Moorecmre 13484  mrClscmrc 13485  ACScacs 13487   Grpcgrp 14362  .gcmg 14366  SubGrpcsubg 14615
This theorem is referenced by:  odf1o1  14883  odf1o2  14884  cycsubgcyg2  15188  pgpfac1lem2  15310  pgpfac1lem3  15312  pgpfac1lem4  15313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618
  Copyright terms: Public domain W3C validator