MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygabl Structured version   Unicode version

Theorem cygabl 15492
Description: A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
cygabl  |-  ( G  e. CycGrp  ->  G  e.  Abel )

Proof of Theorem cygabl
Dummy variables  m  n  x  y  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2435 . . 3  |-  (.g `  G
)  =  (.g `  G
)
31, 2iscyg3 15488 . 2  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) ) )
4 eqidd 2436 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  ( Base `  G )  =  ( Base `  G
) )
5 eqidd 2436 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  ( +g  `  G )  =  ( +g  `  G
) )
6 simpll 731 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  G  e.  Grp )
7 eqeq1 2441 . . . . . . . . . . . 12  |-  ( y  =  a  ->  (
y  =  ( n (.g `  G ) x )  <->  a  =  ( n (.g `  G ) x ) ) )
87rexbidv 2718 . . . . . . . . . . 11  |-  ( y  =  a  ->  ( E. n  e.  ZZ  y  =  ( n
(.g `  G ) x )  <->  E. n  e.  ZZ  a  =  ( n
(.g `  G ) x ) ) )
9 oveq1 6080 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
n (.g `  G ) x )  =  ( m (.g `  G ) x ) )
109eqeq2d 2446 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
a  =  ( n (.g `  G ) x )  <->  a  =  ( m (.g `  G ) x ) ) )
1110cbvrexv 2925 . . . . . . . . . . 11  |-  ( E. n  e.  ZZ  a  =  ( n (.g `  G ) x )  <->  E. m  e.  ZZ  a  =  ( m
(.g `  G ) x ) )
128, 11syl6bb 253 . . . . . . . . . 10  |-  ( y  =  a  ->  ( E. n  e.  ZZ  y  =  ( n
(.g `  G ) x )  <->  E. m  e.  ZZ  a  =  ( m
(.g `  G ) x ) ) )
1312rspccv 3041 . . . . . . . . 9  |-  ( A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x )  ->  ( a  e.  ( Base `  G
)  ->  E. m  e.  ZZ  a  =  ( m (.g `  G ) x ) ) )
1413adantl 453 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  (
a  e.  ( Base `  G )  ->  E. m  e.  ZZ  a  =  ( m (.g `  G ) x ) ) )
15 eqeq1 2441 . . . . . . . . . . 11  |-  ( y  =  b  ->  (
y  =  ( n (.g `  G ) x )  <->  b  =  ( n (.g `  G ) x ) ) )
1615rexbidv 2718 . . . . . . . . . 10  |-  ( y  =  b  ->  ( E. n  e.  ZZ  y  =  ( n
(.g `  G ) x )  <->  E. n  e.  ZZ  b  =  ( n
(.g `  G ) x ) ) )
1716rspccv 3041 . . . . . . . . 9  |-  ( A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x )  ->  ( b  e.  ( Base `  G
)  ->  E. n  e.  ZZ  b  =  ( n (.g `  G ) x ) ) )
1817adantl 453 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  (
b  e.  ( Base `  G )  ->  E. n  e.  ZZ  b  =  ( n (.g `  G ) x ) ) )
19 reeanv 2867 . . . . . . . . . 10  |-  ( E. m  e.  ZZ  E. n  e.  ZZ  (
a  =  ( m (.g `  G ) x )  /\  b  =  ( n (.g `  G
) x ) )  <-> 
( E. m  e.  ZZ  a  =  ( m (.g `  G ) x )  /\  E. n  e.  ZZ  b  =  ( n (.g `  G ) x ) ) )
20 zcn 10279 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  m  e.  CC )
2120ad2antrl 709 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  m  e.  CC )
22 zcn 10279 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ZZ  ->  n  e.  CC )
2322ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  n  e.  CC )
2421, 23addcomd 9260 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( m  +  n )  =  ( n  +  m ) )
2524oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
m  +  n ) (.g `  G ) x )  =  ( ( n  +  m ) (.g `  G ) x ) )
26 simpll 731 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  G  e.  Grp )
27 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  m  e.  ZZ )
28 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  n  e.  ZZ )
29 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  x  e.  ( Base `  G )
)
30 eqid 2435 . . . . . . . . . . . . . . 15  |-  ( +g  `  G )  =  ( +g  `  G )
311, 2, 30mulgdir 14907 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( m  e.  ZZ  /\  n  e.  ZZ  /\  x  e.  ( Base `  G ) ) )  ->  ( ( m  +  n ) (.g `  G ) x )  =  ( ( m (.g `  G ) x ) ( +g  `  G
) ( n (.g `  G ) x ) ) )
3226, 27, 28, 29, 31syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
m  +  n ) (.g `  G ) x )  =  ( ( m (.g `  G ) x ) ( +g  `  G
) ( n (.g `  G ) x ) ) )
331, 2, 30mulgdir 14907 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( n  e.  ZZ  /\  m  e.  ZZ  /\  x  e.  ( Base `  G ) ) )  ->  ( ( n  +  m ) (.g `  G ) x )  =  ( ( n (.g `  G ) x ) ( +g  `  G
) ( m (.g `  G ) x ) ) )
3426, 28, 27, 29, 33syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
n  +  m ) (.g `  G ) x )  =  ( ( n (.g `  G ) x ) ( +g  `  G
) ( m (.g `  G ) x ) ) )
3525, 32, 343eqtr3d 2475 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
m (.g `  G ) x ) ( +g  `  G
) ( n (.g `  G ) x ) )  =  ( ( n (.g `  G ) x ) ( +g  `  G
) ( m (.g `  G ) x ) ) )
36 oveq12 6082 . . . . . . . . . . . . 13  |-  ( ( a  =  ( m (.g `  G ) x )  /\  b  =  ( n (.g `  G
) x ) )  ->  ( a ( +g  `  G ) b )  =  ( ( m (.g `  G
) x ) ( +g  `  G ) ( n (.g `  G
) x ) ) )
37 oveq12 6082 . . . . . . . . . . . . . 14  |-  ( ( b  =  ( n (.g `  G ) x )  /\  a  =  ( m (.g `  G
) x ) )  ->  ( b ( +g  `  G ) a )  =  ( ( n (.g `  G
) x ) ( +g  `  G ) ( m (.g `  G
) x ) ) )
3837ancoms 440 . . . . . . . . . . . . 13  |-  ( ( a  =  ( m (.g `  G ) x )  /\  b  =  ( n (.g `  G
) x ) )  ->  ( b ( +g  `  G ) a )  =  ( ( n (.g `  G
) x ) ( +g  `  G ) ( m (.g `  G
) x ) ) )
3936, 38eqeq12d 2449 . . . . . . . . . . . 12  |-  ( ( a  =  ( m (.g `  G ) x )  /\  b  =  ( n (.g `  G
) x ) )  ->  ( ( a ( +g  `  G
) b )  =  ( b ( +g  `  G ) a )  <-> 
( ( m (.g `  G ) x ) ( +g  `  G
) ( n (.g `  G ) x ) )  =  ( ( n (.g `  G ) x ) ( +g  `  G
) ( m (.g `  G ) x ) ) ) )
4035, 39syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  ( m  e.  ZZ  /\  n  e.  ZZ ) )  ->  ( (
a  =  ( m (.g `  G ) x )  /\  b  =  ( n (.g `  G
) x ) )  ->  ( a ( +g  `  G ) b )  =  ( b ( +g  `  G
) a ) ) )
4140rexlimdvva 2829 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( E. m  e.  ZZ  E. n  e.  ZZ  ( a  =  ( m (.g `  G
) x )  /\  b  =  ( n
(.g `  G ) x ) )  ->  (
a ( +g  `  G
) b )  =  ( b ( +g  `  G ) a ) ) )
4219, 41syl5bir 210 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( E. m  e.  ZZ  a  =  ( m (.g `  G ) x )  /\  E. n  e.  ZZ  b  =  ( n (.g `  G ) x ) )  ->  (
a ( +g  `  G
) b )  =  ( b ( +g  `  G ) a ) ) )
4342adantr 452 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  (
( E. m  e.  ZZ  a  =  ( m (.g `  G ) x )  /\  E. n  e.  ZZ  b  =  ( n (.g `  G ) x ) )  ->  (
a ( +g  `  G
) b )  =  ( b ( +g  `  G ) a ) ) )
4414, 18, 43syl2and 470 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  (
( a  e.  (
Base `  G )  /\  b  e.  ( Base `  G ) )  ->  ( a ( +g  `  G ) b )  =  ( b ( +g  `  G
) a ) ) )
45443impib 1151 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  x  e.  ( Base `  G )
)  /\  A. y  e.  ( Base `  G
) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  /\  a  e.  ( Base `  G
)  /\  b  e.  ( Base `  G )
)  ->  ( a
( +g  `  G ) b )  =  ( b ( +g  `  G
) a ) )
464, 5, 6, 45isabld 15417 . . . . 5  |-  ( ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  /\  A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  G  e.  Abel )
4746ex 424 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( A. y  e.  ( Base `  G
) E. n  e.  ZZ  y  =  ( n (.g `  G ) x )  ->  G  e.  Abel ) )
4847rexlimdva 2822 . . 3  |-  ( G  e.  Grp  ->  ( E. x  e.  ( Base `  G ) A. y  e.  ( Base `  G ) E. n  e.  ZZ  y  =  ( n (.g `  G ) x )  ->  G  e.  Abel ) )
4948imp 419 . 2  |-  ( ( G  e.  Grp  /\  E. x  e.  ( Base `  G ) A. y  e.  ( Base `  G
) E. n  e.  ZZ  y  =  ( n (.g `  G ) x ) )  ->  G  e.  Abel )
503, 49sylbi 188 1  |-  ( G  e. CycGrp  ->  G  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   ` cfv 5446  (class class class)co 6073   CCcc 8980    + caddc 8985   ZZcz 10274   Basecbs 13461   +g cplusg 13521   Grpcgrp 14677  .gcmg 14681   Abelcabel 15405  CycGrpccyg 15479
This theorem is referenced by:  lt6abl  15496  frgpcyg  16846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mulg 14807  df-cmn 15406  df-abl 15407  df-cyg 15480
  Copyright terms: Public domain W3C validator